

INTERFACE LIBRARY

Document Revision History

Edition	Date	Comments
А	01/2014	First Edition
В	03/2012	HEROT frame added
		HEHDT HEROT, IMU BINARY, IMU RAW DATA protocols added
С	10/2013	STOLT OFFSHORE, TSS1/DMS, DOLOG HRP protocols modified
D	06/2014	OCTANS NANO product added
		Quick guide to input protocols updated
		Quick guide to output protocols updated
		AHRS120, RDI SYNC, HEHDT HEROT, HETHS HEROT, POSTPROCESSING, MAHRS, TECHSAS protocols added
		Status description & NMEA frames updated
E	11/2014	Quick guide to input & output protocols updated
		Heart beat and alert management added
		ACK, ACN, ALF, ALR, ARC, PAHRS, PTNTHPR, PSXN19, TAH BIN protocols added
F	01/2015	Algorithm status updated
		NMEA RMC frame updated
		Quick guide to output protocols updated
		IFREMER VICTOR protocol added
		TMS CCV IMBAT AHRS protocol added
G	03/2015	New style guide updated to the document
		QUICK guide to input & output protocols updated
		added
Н	09/2015	OCTANS STANDARD and HEAVE POSTPRO protocols updated.
		OCTANS algorithm status and system status updated.
		Web-based user interface status label added.
	11/2015	
	11,2010	Seapath protocol added.
J	04/2016	Quick guide to output & input protocols updated.
	00/004-	I AH BIN SIVI I protocol added. SEAPATH protocol updated.
K	02/2017	Quick guide to output & input protocols updated. Octans Subsea added. Ifremer Victor V3 & MINIFOG_OTG_MSG8 protocol added. TOKIMEC PTVF protocol updated.

Copyright

All rights reserved. No part of this manual may be reproduced or transmitted, in any form or by any means, whether electronic, printed manual or otherwise, including but not limited to photocopying, recording or information storage and retrieval systems, for any purpose without prior written permission of iXBlue.

Disclaimer

iXBlue specifically disclaims all warranties, either expressed or implied, included but not limited to implied warranties of merchantability and fitness for a particular purpose with respect to this product and documentation. iXBlue reserves the right to revise or make changes or improvements to this product or documentation at any time without notify any person of such revision or improvements.

In no event shall iXBlue be liable for any consequential or incidental damages, including but not limited to loss of business profits or any commercial damages, arising out of the use of this product.

Trademarks

Microsoft and Windows are registered trademarks of Microsoft Corporation. Intel and Pentium are registered trademarks and Celeron is a trademark of Intel Corporation.

Text Usage

Bold	Bold text is used for items you must select or click in the
	software. It is also used for the field names used into the dialog
	box.
Courier	Text in this font denotes text or characters that you should enter
	from the keyboard, the proper names of disk Drives, paths,
	directories, programs, functions, filenames and extensions.
Italic	Italic text is the result of an action in the procedures. It is also
	used for referencing to other document titles.

Icons

The **Note** icon indicates that the following information is of particular interest and should be read with care.

Important

The **Important** mention indicates that the following information should be read to forbid or prevent a product dysfunction or a faulty operation of the equipment.

0000

The **Caution** icon indicates that the following information should be read to forbid or prevent product damage.

The **Warning** icon indicates that possible personal injury or death could result from failure to follow the provided recommendation.

Abbreviations and Acronyms

Abbreviations and acronyms are described in document Inertial Products – Principle and Conventions (Ref.: MU-INS&AHRS-AN-003)

Table of Contents

1 INTRODUCTION								
1.1 Co	ONVENTIONS	7						
1.1.1	Export Regulation Limitations	7						
1.1.2	1.1.2 Reference Frame Notations							
1.2 Fi	1.2 FIRMWARE RESTRICTIONS							
2 OVE	RVIEW OF THE AHRS INTERFACE LIBRARY	10						
2.1.1	Definition of the AHRS Interface Library	10						
2.1.2	Protocol Library Upgrade	10						
2.1.3	Protocol Library Compatibility Issues	11						
2.2 O	CTANS STATUS	12						
2.2.1	Status Overview	12						
2.2.2	OCTANS Sensor Status 1 and 2	13						
2.2.3	OCTANS Algorithm Status	16						
2.2.4	OCTANS System Status 1, 2 and 3	17						
2.2.5	OCTANS User Status	20						
2.2.6	OCTANS High Level Status	22						
3 NME	EA FRAMES	23						
3.1 IN	PUT NMEA FRAME DEFINITION	23						
3.1.1	Non Standard NMEA Frame	23						
3.1.1.1	UTC Frame	23						
3.1.2	Standard NMEA Telegrams	24						
3.1.2.1	\$ACN Frame	24						
3.1.2.2	\$ACK Frame	24						
3.1.2.3	\$GGA Frame	25						
3.1.2.4	\$GLL Frame	26						
3.1.2.5	\$GST Frame	26						
3.1.2.6	\$RMC Frame	27						
3.1.2.7	\$VBW Frame	28						
3.1.2.8	\$VHW Frame	28						
3.1.2.9	\$VTG Frame	29						
3.1.2.10	\$ZDA Frame	29						
3.2 OI	UTPUT NMEA FRAME DEFINITION	30						
3.2.1	Non standard NMEA telegrams	30						
3.2.1.1	\$GPGGA Frame	30						
3.2.1.2	\$GPGLL Frame	31						
3.2.1.3	\$GPGST Frame	31						
3.2.1.4	\$GPVTG Frame	32						
3.2.1.5	\$GPZDA and \$PHZDA Frame	32						
3.2.1.6	\$PHCMP Frame	33						
3.2.1.7	\$PHHRP Frame	33						
3.2.1.8	\$PHINF Frame	33						
3.2.1.9	\$PHLIN Frame	33						
3.2.1.10	\$PHPOS Frame	34						

3.2.1.11	\$PHRUT Frame	34
3.2.1.12	\$PHSPD Frame	34
3.2.1.13	\$PHTRH Frame	35
3.2.1.14	\$PHTRO Frame	35
3.2.1.15	\$PHVIT Frame	35
3.2.1.16	\$STALG Frame	36
3.2.1.17	\$STSOR Frame	36
3.2.1.18	\$STSYS Frame	36
3.2.1.19	\$TIME_Frame	
322	Standard NMEA telegrams	37
3.2.2.1	\$HEALC Frame	37
3222	\$HFAIR Frame	
3223	\$HEARC Frame	
3224	\$HFAI F Frame	
3.2.2.5	\$HEHBT Frame	40
3226	\$HEHDT Frame	40
3227	\$HEROT Frame	41
3228	\$HETHS Frame	41
3229	\$PHTRH Frame	
3.3 C	¢, FFFF, FTF, FTF, FTF, FTF, FTF, FTF, F	42
	h	
4 Digi	TAL INTERFACES	. 43
4.1 H	EART BEAT MANAGEMENT	43
4.2 A	_erts Management	43
4.3 IN	PUT PROTOCOLS	47
4.3 In 4.3.1	PUT PROTOCOLS Quick Guide to Input Protocols	47 47
4.3 IN 4.3.1 4.3.2	PUT PROTOCOLS Quick Guide to Input Protocols Detailed Specifications for Input Protocols	47 47 48
 4.3 IN 4.3.1 4.3.2 DCN Std DCN Stat 	PUT PROTOCOLS Quick Guide to Input Protocols Detailed Specifications for Input Protocols Loch	47 47 48 48 48
4.3 IN 4.3.1 4.3.2 DCN Std DCN Stat IXBLUE S	PUT PROTOCOLS Quick Guide to Input Protocols Detailed Specifications for Input Protocols Loch Indard Nav 1 STANDARD BIN V2, V3	47 47 48 48 49 50
4.3 IN 4.3.1 4.3.2 DCN Std DCN Stat IXBLUE S MINIFOG	PUT PROTOCOLS Quick Guide to Input Protocols Detailed Specifications for Input Protocols Loch hdard Nav 1 STANDARD BIN V2, V3 GPS MSG	47 48 48 48 49 50 51
4.3 IN 4.3.1 4.3.2 DCN Std DCN Stat IXBLUE S MINIFOG NMEA -A NMEA -A	PUT PROTOCOLS Quick Guide to Input Protocols Detailed Specifications for Input Protocols Loch Maard Nav 1 STANDARD BIN V2, V3 GPS MSG ACK	47 48 48 48 49 50 51 52 52
4.3 IN 4.3.1 4.3.2 DCN Std DCN Sta IXBLUE S MINIFOG NMEA -4 NMEA -4 NMEA -6	PUT PROTOCOLS Quick Guide to Input Protocols Detailed Specifications for Input Protocols Loch Indard Nav 1 STANDARD BIN V2, V3 GPS MSG ACK SGA	47 48 48 49 50 51 52 52 52
4.3 IN 4.3.1 4.3.2 DCN Std DCN Sta IXBLUE S MINIFOG NMEA -4 NMEA -4 NMEA -0 NMEA -0 NMEA -0	PUT PROTOCOLS Quick Guide to Input Protocols Detailed Specifications for Input Protocols Loch Indard Nav 1 STANDARD BIN V2, V3 GPS MSG ACK GGA	47 48 48 49 50 51 52 52 52 52 52
4.3 IN 4.3.1 4.3.2 DCN Std DCN Stat IXBLUE S MINIFOG NMEA -A NMEA -A NMEA -C NMEA -C NMEA -C NMEA -F	PUT PROTOCOLS Quick Guide to Input Protocols Detailed Specifications for Input Protocols Loch	47 48 48 49 50 51 52 52 52 52 53 53
4.3 IN 4.3.1 4.3.2 DCN Std DCN Sta IXBLUE S MINIFOG NMEA – NMEA – NMEA – NMEA – NMEA – NMEA – NMEA –	PUT PROTOCOLS Quick Guide to Input Protocols Detailed Specifications for Input Protocols Loch	47 48 48 48 49 50 51 52 52 52 52 53 53 53
4.3 IN 4.3.1 4.3.2 DCN Std DCN Std IXBLUE S MINIFOG NMEA -4 NMEA -4 NMEA -0 NMEA -0 NMEA -0 NMEA -1 NMEA -1 NMEA -1	PUT PROTOCOLS Quick Guide to Input Protocols Detailed Specifications for Input Protocols Loch	47 47 48 48 48 49 51 51 52 52 52 53 53 53 53
4.3 IN 4.3.1 4.3.2 DCN Std DCN Stat IXBLUE S MINIFOG NMEA -A NMEA -A NMEA -C NMEA -C NMEA -L NMEA -N NMEA -N NMEA -N	PUT PROTOCOLS Quick Guide to Input Protocols Detailed Specifications for Input Protocols Loch	47 48 48 48 49 50 51 52 52 52 53 53 53 54 54
4.3 IN 4.3.1 4.3.2 DCN Std DCN Stat IXBLUE S MINIFOG NMEA – NMEA –	PUT PROTOCOLS Quick Guide to Input Protocols Detailed Specifications for Input Protocols Loch	47 48 48 48 49 50 51 52 52 52 53 53 53 54 54
4.3 IN 4.3.1 4.3.2 DCN Std DCN Stat IXBLUE S MINIFOG NMEA -A NMEA -A NMEA -C NMEA -C NMEA -C NMEA -L NMEA -L NMEA -L NMEA -2 NMEA -2 N	PUT PROTOCOLS Quick Guide to Input Protocols Detailed Specifications for Input Protocols Loch	47 48 48 48 49 50 51 52 52 53 53 53 54 54 54
4.3 IN 4.3.1 4.3.2 DCN Std DCN Stat IXBLUE S MINIFOG NMEA - A NMEA - A NMEA - A NMEA - C NMEA - C NMEA - C NMEA - C NMEA - L NMEA - L	PUT PROTOCOLS Quick Guide to Input Protocols	47 48 48 48 49 50 51 52 52 53 53 53 54 54 55 57
4.3 IN 4.3.1 4.3.2 DCN Std DCN Stat IXBLUE S MINIFOG NMEA -A NMEA -A NMEA -A NMEA -C NMEA -C NMEA -C NMEA -C NMEA -V NMEA -2 NMEA -2 N	PUT PROTOCOLS Quick Guide to Input Protocols Detailed Specifications for Input Protocols Indard Nav 1 STANDARD BIN V2, V3 GPS MSG CK CK CK CK CK CK CK CK CK CK CK CK CK	47 48 48 48 49 50 51 52 52 53 53 53 54 54 57 61
4.3 IN 4.3.1 4.3.2 DCN Std DCN Stat IXBLUE S MINIFOG NMEA - A NMEA - A NMEA - A NMEA - C NMEA	PUT PROTOCOLS Quick Guide to Input Protocols	47 48 48 49 50 51 52 52 52 53 53 53 53 54 54 55 61 61
4.3 IN 4.3.1 4.3.2 DCN Std DCN Sta IXBLUE S MINIFOG NMEA -4 NMEA -4 NMEA -4 NMEA -0 NMEA -0 NMEA -0 NMEA -0 NMEA -1 NMEA -1 NM	PUT PROTOCOLS Quick Guide to Input Protocols Detailed Specifications for Input Protocols Loch	47 48 48 49 50 51 52 52 53 53 53 54 54 54 57 61 61 62 64
4.3 IN 4.3.1 4.3.2 DCN Std DCN Stat DCN STAT STAT IXBLUE S MINIFOG NMEA - A MMEA - A NMEA - A MMEA - A NMEA - C NMEA - C NMEA - C NMEA - C NMEA - C NMEA - C NMEA - A NMEA - C NMEA - A NMEA - C NMEA - C O 4.4.1 4.4.2 AHRS 12 AMS - M ANSCHU ATLAS F	PUT PROTOCOLS Quick Guide to Input Protocols Detailed Specifications for Input Protocols Loch	47 48 48 48 49 50 51 52 52 52 53 53 53 53 54 54 55 57 61 61 62 64 65
4.3 IN 4.3.1 4.3.2 DCN Std DCN Stat IXBLUE S MINIFOG NMEA - A NMEA - A NMEA - A NMEA - C NMEA - C NMEA - C NMEA - C NMEA - A NMEA - A	PUT PROTOCOLS Quick Guide to Input Protocols Detailed Specifications for Input Protocols	47 48 48 48 49 50 51 52 52 52 53 53 53 53 53 54 54 54 61 61 62 65 66 66
4.3 IN 4.3.1 4.3.2 DCN Std DCN Sta IXBLUE S MINIFOG NMEA -4 NMEA -4 NMEA -4 NMEA -0 NMEA -0 NMEA -0 NMEA -0 NMEA -1 NMEA -1 NM	PUT PROTOCOLS	47 48 48 49 50 51 52 52 53 53 53 54 54 57 61 61 61 62 661 667 68
4.3 IN 4.3.1 4.3.2 DCN Std DCN Stat IXBLUE S MINIFOG NMEA -A NMEA -A NMEA -C NMEA -C NMEA -C NMEA -C NMEA -C NMEA -V NMEA -V NNN -V NN	PUT PROTOCOLS	47 48 48 48 49 50 51 52 52 52 53 53 53 53 54 54 55 61 61 62 66 67 68 71

GYROCOMPAS 1	73
GYROCOMPAS 2	74
HAM CUSTOM	75
HDMS THOMSON	76
HEAVE POSTPRO	77
HEHDT	79
	00
	00
	81
	82
IFREMER VICTOR V3	83
IG03	84
IMU_BINARY	86
IMU RAWDATA	87
IXBLUE STANDARD BIN V2, V3	89
IXSEA ICCB1	. 106
IXSEA TAH	. 109
JAMSTEC/KAIKOU	.111
MAHRS	113
MDI (trim cube)	115
MDL (IIIII Gube)	116
	117
	. 1 1 /
	. 119
MOTION SENSOR 2	. 120
MOTION SENSOR 3	. 121
MOTION SENSOR 4	. 122
NMEA PRDID	. 123
OCTANS STANDARD	. 124
PAHRS	. 125
POS MV GROUP111	. 127
POSTPROCESSING	. 129
PSXN019	. 130
PTNTHPR	. 131
SEAPATH	. 133
SEATEX DHEAVE	. 136
SHINKAI 6500 HDT	. 138
SIMBAD EM	139
STOLT OFFSHORE	140
	. 141
TAH BIN SMT	142
	143
	1/1
	1/5
	1/6
TMS CCV IMBAT AHRS	447
TECHSAS	. 147
TECHSAS TMS CCV IMBAT AHRS TOKIMEC PTVF TOKIMEC PTVG	. 147
TECHSAS TMS CCV IMBAT AHRS TOKIMEC PTVF TOKIMEC PTVG TSS1/DMS.	. 147 . 149 . 150
TECHSAS TMS CCV IMBAT AHRS TOKIMEC PTVF TOKIMEC PTVG TSS1/DMS TSS335B	. 147 . 149 . 150 . 152
TECHSAS TMS CCV IMBAT AHRS TOKIMEC PTVF	. 147 . 149 . 150 . 152 . 153
TECHSAS TMS CCV IMBAT AHRS TOKIMEC PTVF TOKIMEC PTVG TSS1/DMS TSS335B TUS TUS 5 PULSE INTERFACES	. 147 . 149 . 150 . 152 . 153 155
TECHSAS TMS CCV IMBAT AHRS TOKIMEC PTVF TOKIMEC PTVG TSS1/DMS TSS335B TUS 5 PULSE INTERFACES SEROLIT X Surghro	. 147 . 149 . 150 . 152 . 153 155
TECHSAS TMS CCV IMBAT AHRS TOKIMEC PTVF TOKIMEC PTVG TSS1/DMS TSS335B TUS 5 PULSE INTERFACES SEROUT X Synchro	. 147 . 149 . 150 . 152 . 153 155 . 155
TECHSAS TMS CCV IMBAT AHRS TOKIMEC PTVF TOKIMEC PTVG TSS1/DMS TSS335B TUS 5 PULSE INTERFACES SEROUT X Synchro SEROUT X RTC OUTPUT	. 147 . 149 . 150 . 152 . 153 155 . 155 . 156
TECHSAS TMS CCV IMBAT AHRS TOKIMEC PTVF TOKIMEC PTVG TSS1/DMS TSS335B TUS 5 PULSE INTERFACES SEROUT X Synchro SEROUT X Synchro SEROUT X RTC OUTPUT PPS rising edge & ZDA	. 147 . 149 . 150 . 152 . 153 155 . 155 . 156 . 156
TECHSAS TMS CCV IMBAT AHRS TOKIMEC PTVF TOKIMEC PTVG TSS1/DMS TSS335B TUS 5 PULSE INTERFACES SEROUT X Synchro SEROUT X RTC OUTPUT PPS rising edge & ZDA PPS falling edge & ZDA	. 147 . 149 . 150 . 152 . 153 155 . 155 . 156 . 156 . 157
TECHSAS TMS CCV IMBAT AHRS TOKIMEC PTVF TOKIMEC PTVG TSS1/DMS TSS335B TUS 5 PULSE INTERFACES SEROUT X Synchro SEROUT X Synchro SEROUT X RTC OUTPUT PPS rising edge & ZDA PPS falling edge & ZDA ZDA & PPS rising edge	. 147 . 149 . 150 . 152 . 153 155 . 155 . 156 . 156 . 156 . 157 . 157

1 INTRODUCTION

This document provides information on the OCTANS interface library and the procedure for library protocol update. Depending on the OCTANS model and on the specifications of the connectors, some protocol interfaces are not relevant.

Additionally, this document provides a detailed description of OCTANS built-in test and OCTANS status word.

Unless duly specified in the protocol specification, definitions and conventions used for data input and output are standard OCTANS definitions and conventions such as described in *Inertial Products- Principle and Conventions (Ref.: MU-INS&AHRS-AN-003)*.

1.1 Conventions

1.1.1 EXPORT REGULATION LIMITATIONS

To comply with export regulations the iXBlue AHRS product range complies with the following limitations:

Applicable to	OCTANS OCTANS SUBSEA	OCTANS NANO
Altitude (*)	4000 m	4000 m
Linear Speed (*)	41.66 m/s (150 km/h)	41.66 m/s (150 km/h)
Rotation Speed (*)	750°/s	250°/s
Acceleration (*)(**)	± 15 g	± 5 g

Table 1 - Saturation levels

(*) Software limitation

(**) Hardware design limitation

Table 2 - Resolution limitations on output data

Applicable to	OCTANS OCTANS SUBSEA OCTANS NANO
Acceleration resolution (*)	1 mg
Rotation rates resolution (*)	3.6°/h

(*) Software limitation

(**) Hardware design limitation

To comply with French export regulations the inertial products delivered to some countries cannot output acceleration or rotation rate data and the post-processing protocol is not available. Please contact iXBlue for further details.

1.1.2 REFERENCE FRAME NOTATIONS

The following notations will be found in the protocol descriptions and are explained hereafter:

XV1, XV2, XV3: Vessel frame. XV1 (bow), XV2 (port), XV3 (up).

<u>XVH1, XVH2, XVH3:</u> Vessel Horizontal Frame. Vessel Frame compensated from roll and pitch.

X1, X2, X3: OCTANS Body frame. X1 (forward), X2 (left), X3(up). Refer to Principle and conventions document (Ref.: MU-INS&AHRS-AN-003) for convention description.

X1IMU, X2IMU, X3IMU: IMU reference frame or internal sensor bloc frame. X1IMU(forward), X2IMU(left), X3IMU(up).

XNorth, XEast, XUp: Local geographical frame.

Rotation rates convention:

XVI(I=1,2,3) rotation rate is positive when rotation vector is pointing in XVI(I=1,2,3) direction. "Cork screw" method defines the relation between rotation sign convention and displacement sign (i.e. turning clockwise, the screw move forward). The data is not compensated for earth rotation (15.04°/h).

Heading, Roll, Pitch rotation rate is different from XVI(I=1,2,3) rotation rate.

Acceleration convention:

XVI(I=1,2,3) acceleration is positive when acceleration vector is pointing in XVI(I=1,2,3) direction. Accelerations are compensated from gravity unless specified in the protocol (i.e.: CONTROL protocol).

Figure 1 – Vessel and System reference frame

1.2 Firmware Restrictions

This document provides information on the AHRS interface library, giving the specifications on all standard protocols available on OCTANS running with firmware version higher than described in table below:

	FRMWCINT	Web-based MMI
OCTANS	4.16	5.76.3-1.125
OCTANS SUBSEA	4.20	5.76.3-1.125
OCTANS NANO	4.12	5.61-1.113

Refer to *Inertial Products - Web-based interface user guide (ref.: MU-INS-AN-021)* for the procedure to check the firmware version currently downloaded into your unit. Contact iXBlue customer support (<u>support@ixblue.com</u>) to get the updated firmware version to be downloaded into your system.

9

2 OVERVIEW OF THE AHRS INTERFACE LIBRARY

2.1.1 DEFINITION OF THE AHRS INTERFACE LIBRARY

The AHRS Library is a set of interface protocols which are used to transfer data in and out of the AHRS through the different ports available (serial, Ethernet and pulse).

It is iXBlue's policy not to modify the specifications of the frame of existing protocols in order to maintain full compatibility of the AHRS units throughout the life of the product. Existing protocols are then updated without modification of the data frame.

OCTANS protocols are either:

- Hard-coded into OCTANS, and part of the OCTANS firmware version. In such case, existing protocols are updated and new protocols are added only when a new firmware version is released and downloaded into OCTANS. The specifications described in this document refer to firmware version or higher. All protocols related to serial or Ethernet inputs, pulse inputs and outputs are hard-coded, as well as a part of protocols for serial or Ethernet outputs. Hard-coded protocols that have been developed for specific customer are not documented in the standard Library documentation.
- Library protocols. These appear as text files which are stored into UDP Library folder on the CD-ROM provided with the product. It contains all the standard library protocols listed in Figure 2 - List of OCTANS updated standard library protocols available from the Library.

2.1.2 PROTOCOL LIBRARY UPGRADE

Figure 2 lists all the standard library protocols delivered by iXBlue. The protocol version is referenced by the index at the end of the protocol name. Updated or new protocols may be provided to you by the customer support as text files. Once the files are copied on the PC, these protocols are available for OCTANS serial interface configuration through the Web-Based User Interface. Refer to *Inertial Products - Web-based interface user guide* (ref.: MU-INS-AN-021) to get details about how to configure the serial interface.

2.1.3 PROTOCOL LIBRARY COMPATIBILITY ISSUES

• For OCTANS product:

HAM_CUSTOM.txt HDMS_THOMSON.txt HEHDT HEROT PHTRO.txt IFREMER_VICTOR.txt JAMSTEC_KAIKOU.txt MDL_TRIM_CUBE.txt MDL2.txt NMEA_PRDID.txt PSXN_019rc1.txt SIMRAD_EM.txt STOLT_OFFSHORE.txt TCM_1_2.txt TCM2.txt TMS_CCV_IMBAT_AHRS.txt TOKIMEC_PTVF.txt TOKIMEC_PTVG.txt TSS1_DMS.txt TSS335B.txt

Figure 2 - List of OCTANS updated standard library protocols available from the Library

- For OCTANS NANO product:
 - MDL_TRIM_CUBE.txt MDL2.txt NMEA_PRDID.txt STOLT_OFFSHORE.txt TCM_1_2.txt TCM2.txt TMS_CCV_IMBAT_AHRS.txt NMS_CCV_IMBAT_AHRS.txt TOKIMEC_PTVF.txt NMS_CCV_TVF.txt

Figure 3 - List of OCTANS NANO updated standard library protocols available from the Library

2.2 OCTANS Status

2.2.1 STATUS OVERVIEW

OCTANS has built in tests at a low level of the hardware. These tests convert information translated into status information. The status information will help user to automatically check, in real time, for any malfunctioning, failure or degradation of the system. There is different status information:

- Sensor Status: (2 words of 32 bits)
 - Sensor Status 1: It corresponds to a low level sensor status word. Each flag is linked to sensors state (Optical source board , FOG sensors, accelerometers and temperature sensors).
 - □ Sensor Status 2: It corresponds to a high level sensor status. Each flag is a combination of specific sensor status 1 flags.
- Algorithms Status: (1 word of 32 bits)
 - □ Each flag of the algorithm status is set/unset by gyrocompass algorithm (algorithm state, external sensors, errors...)
- System Status: (3 words of 32 bits)
 - Each flag of the system status is linked to system state (input/output activity, sensor detection, system errors...)
- User Status: (1 word of 32 bits)
 - Each flag of the user status is a combination of flags from sensor, algorithm and/or system status.

The Figure 4 describes the previous description of status words.

Figure 4 - Status information arborescence

2.2.2 **OCTANS SENSOR STATUS 1 AND 2**

Sensor status 1 corresponds to a low level sensor status. Each of sensor status 1 flag can trigger "Degraded_Mode" or "Failure_Mode" flags, visible in sensor status 2. Triggering thresholds corresponds to a number of successive occurrences (counted at sensor raw data frequency of 400Hz).

Bit	OCTANS NANO	OCTANS	OCTANS SUBSEA	Name	Appearance conditions	Status value	Sensor status 2 threshold	Degraded mode threshold	Failure mode threshold	
0	✓	~	\checkmark	DATA_READY_ERR	Loss of sensors raw data (FOG or ACC)	0x00000001	1	N/A	3	
1	N/A	~	V	SOURCE_POWER_CONTROL_ERR	FOG Optical source control power failure. Set when measured optical power <50% of set point (triggered by FOG Optical source board: bits 7 and 0 source status)	0x00000002	10	10	100	
2	N/A	~	~	SOURCE_DIODE_ERR	FOG Optical source diode off (bit 11 source status +)	0x00000004	10	10	100	
3	N/A	~	V	SOURCE_MODE_ERR	FOG Optical source not in power control mode (bit 8 source status)	0x0000008	10	10	100	
4				ACC_X_SATURATION_ERR		0x00000010				
5	 ✓ 	~	~	ACC_Y_SATURATION_ERR	Accelerometer saturation (ADC saturation: OVF: bit 2 of ACC n (n=X Y Z) status)	0x00000020	1	1	10	
6				ACC_Z_SATURATION_ERR		0x00000040				
7				ACC_X_ACQ_ERR		0x0000080				
8	~	✓ ✓		ACC_Y_ACQ_ERR	Accelerometer acquisition error. (ADC incorrect frame: i.e: bit 3 ACC n (n=X.Y.Z) status)	0x00000100	5	5	10	
9				ACC_Z_ACQ_ERR		0x00000200				
10			,	FOG_X_SATURATION_ERR	FOG saturation. (ADC saturation: OVF_CAN: bit 0 FOG_n (n=X,Y,Z)	0x00000400		100	1000	
11	✓	V	~	FOG_Y_SATURATION_ERR		0x0000800	100			
12				FOG_Z_SATURATION_ERR	status)	0x00001000				
13				FOG_X_VPI_ERR	VPI voltage control error.	0x00002000				
14	✓	\checkmark	\checkmark	\checkmark	FOG_Y_VPI_ERR	(VPI used to convert FOG phase shift to voltage and rotation: 0x00004000 1 N/A	N/A	1		
15				FOG_Z_VPI_ERR	ERROR_VPI: bit 1 FOG_n (n=X,Y,Z) status)	0x00008000				
16				FOG_X_LOW_POWER	FOG low power.	0x00010000				
17	N/A	\checkmark	N/A	FOG_Y_LOW_POWER	(LOW_POWER: bit 7 FOG_n (n=X,Y,Z) status)	0x00020000	10000	10000	N/A	
18				FOG_Z_LOW_POWER		0x00040000				
19				FOG_X_ACQ_ERR		0x00080000				
20			\checkmark	FOG_Y_ACQ_ERR	FOG frame acquisition error. (sensor board level: Framing FOG n (n=X.Y.Z) byte)	0x00100000	1	1	10	
21				FOG_Z_ACQ_ERR		0x00200000				
22		FOG_X_CRC_		FOG_X_CRC_ERR	FOG frame CRC error.	0x00400000				
23	~	~	✓	FOG_Y_CRC_ERR	(DSP board level: Check of CRC FOG_n (n=X,Y,Z)	0x00800000	10	10	100	
24				FOG_Z_CRC_ERR	Data)	0x01000000				

Table 3 – Low level sensor status 1 description

Bit	OCTANS NANO	OCTANS	OCTANS SUBSEA	Name	Appearance conditions	Status value	Sensor status 2 threshold	Degraded mode threshold	Failure mode threshold
25	~	~	~	TEMP_ACQ_ERR	Temperature acquisition error (Optical source, ACC and FOG temperatures on sensor board)	0x02000000	1	1	N/A
26	1	1	~	TEMP_THRESHOLD_ERR	TEMP_THRESHOLD_ERR will be set to 1, if any of the measured temperature (TACCx,y,z; TFOGx,y,z, TSource board) is greater than 90° or Tsensor board is greater than 115°C. In practice the Tsensor board will trigger the alarm first since temperature sensor is on an electronic component	0x04000000	1	1	N/A
27	~	~	~	DTEMP_THRESHOLD_ERR	DTEMP_THRESHOLD_ERR will be set to 1 if any temperature variation is greater than 5°/minute.	0x08000000	1	1	N/A
28	~	~	~	SENSOR_DATA_FIFO_WARNING	Sensor raw data FIFO half full	0x10000000	N/A	N/A	N/A
29	~	~	~	SENSOR_DATA_FIFO_ERR	Sensor raw data FIFO full	0x20000000	1	N/A	1
30	N/A	~	~	SOURCE_POWER_ERR	Difference between measured source power and requested source power greater than 10% (Computed by DSP board)	0x40000000	100	100	1000
31	N/A	~	~	SOURCE_RECEPTION_ERR	Source data reception error (loss of source data, computed at DSP level)	0x80000000	100	N/A	100

Sensor status 2 corresponds to a high level sensor status. Each of the sensor status 2 flag is a combination ('or') of specific sensor status flag. "Degraded_Mode" or "Failure_Mode" flags are set if one the sensor status 1 flag counts respectively reaches degraded mode or failure mode threshold.

Status label are displayed on the web-based user interface with different colors:

- Message in blue: information message
- Message in orange: warning message
- Message in red: error message

Table 4 – High lever sensor status 2 description

Bit	OCTANS NANO	OCTANS OCTANS SUBSEA	Name	Status label displayed on the web-based user interface	Appearance conditions
0	¥	~	FOG_X_ERR	FOG X Error	FOG_X_SATURATION_ERR (bit 10 Sensor Status 1) or FOG_X_ACQ_ERR (bit 19 Sensor Status 1) or FOG_X_CRC_ERR (bit 22 Sensor Status 1) or FOG_X_VPI_ERR (bit 13 Sensor Status 1) or FOG_X_LOW POWER (bit 16 Sensor Status 1)
1	~	\checkmark	FOG_Y_ERR	FOG Y Error	All Sensor Status 1 FOG_Y abnormalities (like FOG_X_ERR): (Bits 11, 20, 23, 14, 17 and 5 of Sensor Status 1).
2	~	~	FOG_Z_ERR	FOG Z Error	All Sensor Status 1 FOG_Z abnormalities (like FOG_X_ERR): (Bits 12, 21, 24, 15, 18 and 6 of Sensor Status 1).
3	N/A	\checkmark	SOURCE_ERR	Source error	SOURCE_POWER_CONTROL_ERR (bit 1 Sensor Status 1) or SOURCE_DIODE_ERR (bit 2 Sensor Status 1)

	Bit	OCTANS NANO	OCTANS OCTANS SUBSEA	Name	Status label displayed on the web-based user interface	Appearance conditions
						or SOURCE_MODE_ERR (bit 3 Sensor Status 1) or SOURCE_POWERERR (bit 30 Sensor Status 1) or SOURCE_RECEPTION _ERR (bit 31 Sensor Status 1)
	4	~	~	ACC_X_ERR	Acc X Error	ACC_X_SATURATION_ERR (bit 4 Sensor Status 1) or ACC_X_ACQ_ERR (bit 7 Sensor Status 1)
	5	~	\checkmark	ACC_Y_ERR	Acc Y Error	All Sensor Status 1 ACC_Y abnormalities (like ACC_X_ERR): (Bits 5 and 8 of Sensor Status 1).
	6	~	✓	ACC_Z_ERR	Acc Z Error	All Sensor Status 1 ACC_Z abnormalities (like ACC_X_ERR): (Bits 6 and 9 of Sensor Status 1).
	7	V	V	TEMP_ERR	Temperature Alarm	TEMP_ACQ_ERR (bit 25 Sensor Status 1) or TEMP_THRESHOLD_ERR (bit 26 Sensor Status 1) or DTEMP_THRESHOLD_ERR (bit 27 Sensor Status 1)
	8	~	\checkmark	DSP_OVERLOAD	DSP overload	SENSOR_DATA_FIFO_WARNING (bit 28 Sensor Status 1) or SENSOR_DATA_FIFO_ERR (bit 29 Sensor Status 1)
	9	N/A	~	ERR_INIT_CAN_AC C_X	-	CAN_ACC_X Initialization Error
	10	N/A	~	ERR_INIT_CAN_AC C_Y	-	CAN_ACC_Y Initialization Error
	11	N/A	~	ERR_INIT_CAN_AC C_Z	-	CAN_ACC_Z Initialization Error
	12-29	~	~	Reserved	-	-
	20	~	N/A	FAILURE_MODE	Failure Mode	
	30	N/A	~	DEGRADED_MODE	Degraded Mode	See "Low level Sensor Status 1 description" table:
	04	✓	N/A	DEGRADED_MODE	Degraded Mode	Case numbers to trigger Degraded and Failure mode.
31	N/A	✓	FAILURE_MODE	Failure Mode		

AHRS – Interface Library

Status value
0x00000010
0x00000020
0x00000040
0×00000080
0x00000100
0x00000200
0x00000400
0x0000800
-
0x40000000
0x80000000

2.2.3 OCTANS ALGORITHM STATUS

OCTANS algorithm status consists of one status words. Each flag of the OCTANS algorithm status is set/unset by the gyrocompass algorithm.

Status label are displayed on the web-based user interface with different colors:

- Message in blue: information message
- Message in orange: warning message
- Message in red: error message

Bit	OCTANS SUBSEA	OCTANS NANO	OCTANS	Name	Status label displayed on the web-based user interface	Appearance conditions	Status value
1	~	~	~	ALIGNMENT	Alignment	Alignment mode (5 minutes from power on)	0x00000002
2	-	✓	✓	FINE ALIGNMENT		Fine Alignment completed	0x00000004
3-4	-	-	-	Reserved	-	-	-
5	~	-	-	HEAVE_INITIALISATION	Heave Init	Heave filters initialization. Starts at power on and lasts less then 10 minutes.	0x00000020
6	-	-	-	Reserved	-	-	-
7	~	~	~	MANUAL_LATITUDE	Manual latitude	Manual latitude used. Set when no external latitude received.	0x00000080
8	~	~	~	MANUAL_SPEED	Manual Speed	Manual speed used. Set when no external speed received. Not set on OCTANS if position is received as speed is estimated in this case	0x00000100
9	-	-	-	LATITUDE_COMPUTATION	-	Automatic Latitude Computation	0x00000200
10-12	-	-	-	Reserved	-	-	-
13	-	~	~	MANUAL_LONGITUDE	Manual longitude	Manual Longitude Used	0x00002000
14	-	~	~	POLAR_VALIDITY	Polar mode	Output Polar Data validity	0x00004000
15	-	~	~	INCOMPATIBLE_FIRMWARES	Incompatible firmwares	Firmwares incompatible with Hardware (FOG, ACC or Algo type unset)	0x00008000
16-21	-	-	-	Reserved	-	-	-
22	~	~	~	HEADING_ERR	HRP not valid	Set when avrocompass algorithm does not converge (bad latitude	0x00400000
23	~	\checkmark	\checkmark	ROLL_ERR	-	input, speed input or sensor failure)	0x00800000
24	~	~	~	PITCH_ERR	-		0x01000000
25-28	-	-	-	Reserved	-	-	-
29	-	✓	~	SPEED SATURATION	Speed exceeded	Speed saturation	0x20000000
30-31	-	-	-	Reserved	-	-	-

Table 5 – OCTANS Algorithm status description

2.2.4 OCTANS SYSTEM STATUS 1, 2 AND 3

\$STSYS,STATUS is a 64 bits word, which acts as a built-in test and control of OCTANS at the system level. This System status is updated in real time and monitored through dedicated flags. It is dedicated to get information on status of serial input and output lines together with Ethernet activity. It also controls the detection of external sensors and system malfunction. Each flag is a bit which is set to "1" when flag is ON and set to "0" when flag is OFF.

The OCTANS status word is coded with 16 hexadecimal characters in the "\$STSYS,hhhhhhhh,IIIIIIII" NMEA sentence. hhhhhhhh is the hexadecimal value of the first 32 Less Significant Bits (System Status 1). IIIIIIII is the hexadecimal value of the 32 Most Significant Bits (System Status 2).

Status 3 is available through specific protocols (not OCTANS STANDARD) to remain consistency with the existing applications.

The hexadecimal coding hhhhhhhh of the 32 LSB of \$STSYS is given in Table 6. Bits 0 to 3 correspond to the value of the weakest hexadecimal number, bits 4 to 7 correspond to the second weakest hexadecimal number and so on. The hexadecimal coding IIIIIII of the 32 MSB of \$STSYS is given in Table 7. Bits 32 to 35 correspond to the value of the weakest hexadecimal number, bits 36 to 39 correspond to the second weakest hexadecimal number and so on.

When a status bit is set to 1, the corresponding message is displayed in the System Status area of the User Interface.

Status label are displayed on the web-based user interface with different colors:

- Message in blue: information message
- Message in orange: warning message
- Message in red: error message

Table 6 - OCTANS System status 1 description

Bit	OCTANS	OCTANS NANO	OCTANS SUBSEA	Appearance conditions	
0		INPUT_R_ERR/ Input R erro	r		
1			Input A error		
2	Res	erved	Input B error		
3			Input C error	Serial Port: Input port Framing Error	
4	INPUT_A_ERR	/ Input A error	Input D error	(Baudrate, parity).	
5	INPUT_B_ERR	/ Input B error	Input E error	From repeater port R to port E.	
6	INPUT_C_ERR/ Input C error	Re	served		
7	INPUT_D_ERR/ Input D error	Re			
8		INPUT_PORT_R_ACTIVITY/INPU	JT R		
9			INPUT_A_ACTIVITY / Input A		
10	Res	erved	INPUT_B_ACTIVITY / Input B		
11			INPUT_C_ACTIVITY / Input C		
12	INPUT_A_AC1	TVITY / Input A	INPUT_D_ACTIVITY / Input D	Input port activity (RS or Ethernet) (set when received data, before input protocol	
13	INPUT_B_ACTIVITY / Input B		INPUT_E_ACTIVITY / Input E	decoding)	
14	INPUT_C_ACTIVITY / Input C	Re	served		
15	INPUT_D_ACTIVITY / / Input D	Reserved			

Status value
0x00000001
0x0000002
0x00000004
0x0000008
0x00000010
0x00000020
0x00000040
0x0000080
0x00000100
0x00000200
0x00000400
0x0000800
0x00001000
0x00002000
0x00004000
0x00008000

Bit	OCTANS	OCTANS NANO	OCTANS SUBSEA	Appearance conditions	:
16		OUTPUT_R_FULL / Output R f			
17		OUTPUT_A_FULL / Output A f	full		
18		OUTPUT_B_FULL / Output B f	full	Output port full (RS or Ethernet)	
19		OUTPUT_C_FULL / Output C f	full	(too much data to transfer)	
20		OUTPUT_D_FULL / Output D	full		
21		OUTPUT_E_FULL / Output E f	full		
22	ETHE	ERNET_PORT_FULL / Ethernet o	output full	Ethernet output full (common for all Ethernet output ports)	
23	EXTE	RNAL_LAT_RECEIVED / Lattitud	External latitude received (in GGA frame)		
24	II	NTERNAL_TIME_USED / Interna	System uses internal time		
25	EXTE	ERNAL_TIME_SYNC / External ti	UTC Time received and used (ZDA or ZDA+PPS)		
26		ETHERNET PORT ACTIVITY /	/ _	Ethernet link reception (common for all Ethernet input ports)	
27	PULSE_IN_A_ACTIVITY / Pulse in A	PULSE_IN_A_ACTIVITY / Pulse in A	PULSE_IN_A_ACTIVITY / Pulse in A		
28	PULSE_IN_B_ACTIVITY / Pulse in B		PULSE_IN_B_ACTIVITY / Pulse in B		
29	PULSE_IN_C_ACTIVITY / Pulse in C	Reserved	PULSE_IN_C_ACTIVITY / Pulse in C	- Input Pulse activity	
30	PULSE_IN_D_ACTIVITY / Pulse in D				
31	EXTERNAL	TIME_RECEIVED / External ti	External Time received		

Status value
0x00010000
0x00020000
0x00040000
0x00080000
0x00100000
0x00200000
0x00400000
0x00800000
0x01000000
0x02000000
0x04000000
0x08000000
0x10000000
0x20000000
0x40000000
0x80000000

Bit	OCTANS OCTANS NANO OCTANS SUBSEA	Status label displayed on the web-based user interface	Appearance conditions	Status value
0 - 1	Reserved	-	-	-
2	GPS_DETECTED	GPS reception	GPS data detected	0x0000004
3 - 12	Reserved	-	-	-
13	EXTERNAL_LONGITUDE_USED	Longitude received	External Longitude Received	0x00002000
14-16	Reserved	-	-	-
17	EXTERNAL_SPEED_RECEIVED	Speed received	External Speed Received	0x00020000
18	DSP_INCOMPATIBILITY	Incompatible DSP firmware	DSP firmware and CINT firmware are not compatible	0x00040000
19 - 23	Reserved	-	-	-
24	INTERNAL_LOG	Internal logging	Internal Log in progress	0x0010000
25	Reserved	Analog Outputs Failure	SPI DACs Link Failure	0x0020000
26	Reserved	-	-	-
27	MPC_OVERLOAD	Latency warning	Interface board CPU overload (too much output protocols with too high output rates)	0x08000000
28	POWER_SUPPLY_FAILURE	Power failure	Unit power failure	0x1000000
29	Reserved	-	-	0x20000000
30	CONFIGURATION_SAVED	Configuration saved	Configuration saved after having been changed	0x4000000
31	Reserved	-	-	-

Table 7 - OCTANS System status 2 description

Table 8 - OCTANS System status 3 description

Bit	OCTANS OCTANS NANO OCTANS SUBSEA	Status label displayed on the web-based user interface	Appearance conditions	Status value
0-6	Reserved	-	Reserved	-
7	MANUAL SPEED DETECTED	Manual speed	Manual Speed Received	0x0000080
8-31	Reserved	-	Reserved	-

AHRS – Interface Library

OCTANS USER STATUS 2.2.5

The OCTANS User Status is a 32 bits word which acts as a built-in test and control of the system. Different OCTANS modes as well as the optical and electrical sub-parts status are monitored in real time through dedicated flags. Each flag is a bit which is set to "1" when flag is ON and set to "0" when flag is OFF.

This status is generated for compatibility with OCTANS III status. Additional status bits specific to OCTANS surface can be found in system status described in next section. The OCTANS status word coding is described in 2.2.1.

The OCTANS User status word is 32 bits long, coded with 8 hexadecimal characters in the "\$PHINF,hhhhhhhh" NMEA sentence.

Table 9 - OCTANS User status description

Bit	OCTANS OCTANS SUBSEA	OCTANS NANO	Set when following bits are set	Status value
0	HEADING_NOT_VALID		HEADING_ERR (bit 22 Algo Status)	0x0000001
1	ROLL_NO	T_VALID	ROLL_ERR (bit 23 Algo Status)	0x0000002
2	PITCH_NO	T_VALID	PITCH_ERR (bit 24 Algo Status)	0x0000004
3	HEAVE_INIT	Reserved	HEAVE_INITIALISATION (bit 5 Algo Status)	0x0000008
4	Reser	rved		-
5	ALIGNE	MENT	ALIGNEMENT (bit 1 Algo Status)	0x0000020
6	CONFIG_	SAVED	CONFIGURATION_SAVED (bit 30 System Status 2)	0x0000040
7	DSP_OVE	RLOAD	DSP_OVERLOAD (bit 8 Sensor Status 2)	0x0000080
8	FOG_X1_A	NOMALY	FOG_X_ERR (bit 0 Sensor Status 2)	0x00000100
9	FOG_X2_A	NOMALY	FOG_Y_ERR (bit 1 Sensor Status 2)	0x0000200
10	FOG_X3_A	NOMALY	FOG_Z_ERR (bit 2 Sensor Status 2)	0x00000400
11	FOG_ACQ_ERR		FOG_X_ERR (bit 0 Sensor Status 2) or FOG_Y_ERR (bit 1 Sensor Status 2) or FOG_Z_ERR (bit 2 Sensor Status 2)	0x0000800
12	ACC_X1_ANOMALY		ACC_X_ERR (bit 4 Sensor Status 2)	0x00001000
13	ACC_X2_ANOMALY		ACC_Y_ERR (bit 5 Sensor Status 2)	0x00002000
14	ACC_X3_ANOMALY		ACC_Z_ERR (bit 6 Sensor Status 2)	0x00004000
15	SENSOR_ERR		FOG_X_ERR (bit 0 Sensor Status 2) or FOG_Y_ERR (bit 1 Sensor Status 2) or FOG_Z_ERR (bit 2 Sensor Status 2) or ACC_X_ERR (bit 4 Sensor Status 2) or ACC_Y_ERR (bit 5 Sensor Status 2) or ACC_Z_ERR (bit 6 Sensor Status 2) or TEMP_ERR (bit 7 Sensor Status 2)	0x00008000
16	INPUT_A_ERR		INPUT_A_ERR (bit 4 System Status1) for OCTANS & OCTANS NANO INPUT_A_ERR (bit 1 System Status1) for OCTANS 3000	0x00010000
17	INPUT_E	3_ERR	INPUT_B_ERR (bit 5 System Status1) for OCTANS & OCTANS NANO INPUT_B_ERR (bit 2 System Status1) for OCTANS 3000	0x00020000
18	INPUT_F	R_ERR	INPUT_R_ERR (bit 0 System Status1)	0x00040000

Bit	OCTANS OCTANS SUBSEA	OCTANS NANO	Set when following bits are set	Status value
19	CPU_OVE	ERLOAD	CINT_OVERLOAD (bit 27 System Status 2)	0x00080000
20	OUTPUT_	_A_FULL	OUTPUT_A_FULL (bit 17 System Status 1)	0x00100000
21	OUTPUT_	_B_FULL	OUTPUT_B_FULL (bit 18 System Status 1)	0x00200000
22	OUTPUT_	_C_FULL	OUTPUT_C_FULL (bit 19 System Status 1)	0x00400000
23	OUTPUT_	_R_FULL	OUTPUT_R_FULL (bit 16 System Status 1)	0x00800000
24	MANUAL_SPI	EED_USED	MANUAL_LATITUDE (bit 7 Algo Status)	0x01000000
25	MANUAL_LATITUDE_USED		MANUAL_LATITUDE_USED MANUAL_SPEED (bit 8 Algo Status)	
26	INTERNAL_TIME_USED		INTERNAL_TIME_USED (bit 24 System Status 1)	0x04000000
27	HRP_NOT_VALID		HEADING_ERR (bit 22 Algo Status) or ROLL_ERR (bit 23 Algo Status) or PITCH_ERR (bit 24 Algo Status)	0x08000000
28	TEMPERAT	URE_ERR	TEMP_ERR (bit 7 Sensor Status 2)	0x10000000
29	Reser	rved	-	-
30	DEGRADED_MODE		DEGRADED_MODE (bit 31 Sensor Status 2) for OCTANS and OCTANS 3000 DEGRADED_MODE (bit 30 Sensor Status 2) for OCTANS NANO or ALIGNEMENT (bit 1 Algo Status 1)	0x40000000
31	FAILURE_MODE		FAILURE_MODE (bit 30 Sensor Status 2) for OCTANS and OCTANS 3000 FAILURE_MODE (bit 31 Sensor Status 2) for OCTANS NANO	0x80000000

AHRS – Interface Library

2.2.6 OCTANS HIGH LEVEL STATUS

Bit	OCTANS OCTANS NANO OCTANS SUBSEA	Set when following bits are set	Status value
0	SYSTEM OK	SYSTEM INIT (bit 1 HighLevel Status) NOT SET and SYSTEM ERROR (bit 2 HighLevel Status) NOT SET	0x00000001
1	SYSTEM INIT	ALIGNEMENT (bit 1 Algo Status) SET or HEAVE_INIT (bit 5 Algo Status) SET	0x0000002
2	SYSTEM ERROR	ELECTRONIC ERROR (bit 9 High Level Status) SET or SERIAL IN ERROR (bit 5 High Level Status) SET or SERIAL OUT ERROR (bit 7 High Level Status) SET or HEADING_ERR or ROLL_ERR or PITCH_ERR (bit 22 to 24Algo Status) SET	0x00000004
3	Reserved	-	-
4	SERIAL IN OK	SERIAL IN ERROR (bit 5 HighLevel Status) NOT SET	0x00000010
5	SERIAL IN ERROR	INPUT R,A,B,C,D or E ERR (bits 0 to 5 System Status 1) SET	0x0000020
6	SERIAL OUT OK SERIAL OUT ERROR (bit 7 HighLevel Status) NOT SET		0x00000040
7	SERIAL OUT ERROR OUTPUT R,A,B,C,D or E FULL (bits 16 to 20 System Status 1) SET		0x0000080
8	ELECTRONIC OK ELECTRONIC ERROR (bit 9 HighLevel Status) NOT SET		0x00000100
9	9 ELECTRONIC ERROR bit 15 HighLevel Status) SET or ACC ERROR (bit 15 HighLevel Status) SET or FOG ERROR (bit 11 HighLevel Status) SET		0x00000200
10	FOG OK	FOG ERROR (bit 11 HighLevel Status) NOT SET	0x00000400
11	FOG ERROR	FOG X,Y,or Z ERROR (bits 0,1,2 Sensor Status 2) SET	0x0000800
12	ACC OK	ACC ERROR (bit 13 HighLevel Status) NOT SET	0x00001000
13	ACC ERROR	ACC X,Y,Z ERROR (bit 4,5,6 Sensor Status 2) SET	0x00002000
14	CPU OK	J OK CPU ERROR (bit 15 HighLevel Status) NOT SET	
15	CPU ERROR DSP OVERLOPAD (bit 8 Sensor Status 2) SET or CINT OVERLOAD (bit 27 System Status 2) SET		0x00008000
16-24	Reserved	-	-
24	TEMPERATURE OK	TEMP ERROR (bit 7 Sensor Status 2) NOT SET	0x01000000
25-31	Reserved	-	-

Table 10 - OCTANS User status description

AHRS – Interface Library

3 **NMEA FRAMES**

\$CCCCC	\$CCCCCCC*hh <cr><lf></lf></cr>						
where:	\$	'\$' fix character					
ccccc		is the frame content					
*		'*' fix character					
hh		is the NMEA 0183 (hexadecimal encoded					
		XOR of all bytes excluding the starting					
		character '\$' and the stop one '*)					

Each NMEA frame described below is formatted as follows:

3.1 Input NMEA Frame Definition

This section described all NMEA 0183 frames being common in several inputs protocols. Refer to the section 4.1 to know exactly which frames are decoded by the NMEA compatible protocols.

3.1.1 NON STANDARD NMEA FRAME

3.1.1.1 UTC Frame

UTC yy.mm.dd hh:mm:ss ab <cr><lf></lf></cr>			
Where	UTC	fixed text header	
	yy.mm.dd	year month and date (USED)	
	hh:mm:ss	UTC time not GPS time. (USED)	
	a	Integer number representing the position-fix type: (cf. Note 1) (USED) 1 = time only 2 = 1D & time 3 = currently unused 4 = 2D & time 5 = 3D & time	
	b	? = no time Number of GPS satellites being tracked. (NOT USED) Note – If the receiver is not tracking satellites, the time tag is based on the receiver clock. In this case, a and b are represented by "??". The time readings from the receiver clock are less accurate than time readings determined from the satellite signals.	

Note 1: If a=?, telegram is invalid. if a=1, 2, 3, 4, or 5, telegram is valid.

3.1.2 STANDARD NMEA TELEGRAMS

3.1.2.1 \$--ACN Frame

This frame is the new version of alert command received from the Integrated Navigation System to modify an alert state. It complies with IEC 61924-2: 2012-12.

\$ACN,HHMMSS.SS,AAA,BBB,C,D,E*hh <cr><lf></lf></cr>				
HHMMSS.SS	Time of command	(NOT USED)		
AAA	Manufacturer mnemonic	Must be empty		
BBB	Alert identifier	Must be 240 for standard gyrocompass system fault alert		
С	Alert instance	Must be set to 1		
D	Alert command	Must be: 'A' to acknowledge the alert 'Q' to request/repeat the alert 'O' to request a responsibility transfer 'S' to silence the alert		
Е	Sentence status flag	Must be set to 'C'		
hh	NMEA checksum			

3.1.2.2 \$--ACK Frame

This frame is the old version of alert command received from the Integrated Navigation System to acknowledge an alert. It complies with standard IEC 61162-1 (2010-11).

\$ACK,AAA*hh <cr><lf></lf></cr>				
AAA	Alert identifier	Must be 240 for standard gyrocompass system fault alert		
hh	NMEA checksum			

3.1.2.3 \$--GGA Frame

\$GGA,hhmmss.ss,llmm.mm,a, LLLmm.mm,b,q,ss,y.y,x.x,M,g.g,M,a.a,zzzz*hh <cr><lf></lf></cr>		
hhmmss.ss	UTC of position (USED)	
llmm.mm	Latitude in degrees (II) and in minutes (mm.mm) (USED)	
а	Hemisphere N: North S: South (USED)	
LLLmm.mm	Longitude in degrees (LLL) and in minutes (mm.mm) (USED)	
b	Longitude sign E: East W: West (USED)	
q	GPS quality indicator 0 and \geq 6 fix invalid 1=GPS SPS Mode, fix valid 2=Differential GPS, SPS Mode, fix valid 3= GPS PPS Mode, fix valid 4= RTK. Satellite system used in RTK mode with fixed integers 5= Float RTK. Satellite system used in RTK mode with floating integers (USED)	
SS	Number of satellites. (Note 1) (USED)	
у.у	Horizontal dilution of precision. (Note 1) (USED)	
x.x	Antenna altitude (USED)	
Μ	Units of antenna altitude (meters) (USED)	
g.g	Geoidal separation. (USED)	
Μ	Units of geoidal separation (meters)	
a.a	Age of differential GPS data. (NOT USED)	
ZZZZ	Differential reference station ID. (NOT USED)	
hh	NMEA checksum	

Note 1: Data read and transmitted to certain output telegrams (i.e: GPS LIKE). The data is not used by the algorithm.

3.1.2.4 \$--GLL Frame

\$GLL,llmm		
llmm.mm	Latitude in degrees (II) and in minutes (mm.mm)	(USED)
а	ASCII 'N' for North, ASCII 'S' for South	(USED)
LLLmm.mm	Longitude in degrees (LLL) and in minutes (mm.mm)	(USED)
b	ASCII 'E' for East, ASCII 'W' for West	(USED)
hhmmss.ss	UTC time of position (Note 1)	(USED)
S	Status (Note 2): ASCII 'A' = data valid ASCII 'V' = data invalid Warning : Shall not be blank field	(USED)
М	Positioning system Mode indicator (Note 2) : ASCII 'A' = Autonomous mode ASCII 'D' = Differential mode ASCII 'E' = Estimated (dead reckoning) mode ASCII 'M' = Manual input mode ASCII 'S' = Simulator N= Data not valid Warning : Shall not be blank field	(USED)
hh	NMEA checksum	

Note 1: Time is used by algorithm in "INS algorithm based" products.

Note 2: For GLL or RMC telegram, the Mode indicator field supplements the status field. The status field shall be set to 'V' (data invalid) for all values of operating mode except for 'A' and 'D' (Autonomous and Differential).

3.1.2.5 \$--GST Frame

\$GST,hhmmss.ss,x.x,. x.x,. x.x,. x.x,. x.x,. x.x,. x.x,*hh <cr><lf></lf></cr>		
hhmmss.ss	UTC time of the GGA fix associated with this sentence	(USED)
x.x	RMS value of the standard deviation on pseudo-ranges	(NOT USED)
x.x	Standard deviation of semi-major axis of error ellipse	(NOT USED)
x.x	Standard deviation of semi-minor axis of error ellipse	(NOT USED)
x.x	Orientation of semi-major axis of error ellipse	(NOT USED)
х.х	Standard deviation of latitude error, in meters	(USED)
x.x	Standard deviation of longitude error, in meters	(USED)

\$GST,hhm		
x.x	Standard deviation of altitude error, in meters	(USED)
hh	NMEA checksum	

3.1.2.6 \$--RMC Frame

\$RMC,hhmmss.ss,S,IImm.mm,a,LLLmm.mm,b,x.x,x.x,ddmmyy,x.x,S,M*hh <cr><lf></lf></cr>			
S	Status : ASCII 'A' = data valid ASCII 'V' = data invalid Warning : Shall not be blank field	(USED)	
llmm.mm	Latitude in degrees (II) and in minutes (mm.mm)	(USED)	
а	ASCII 'N' for North, ASCII 'S' for South	(USED)	
LLLmm.mm	Longitude in degrees (LLL) and in minutes (mm.mm)	(USED)	
b	ASCII 'E' for East, ASCII 'W' for West	(USED)	
x.x	Speed over ground in knots (Note 1)	(USED)	
x.x	Course over ground in degrees	(NOT USED)	
ddmmyy	Date	(NOT USED)	
x.x	Magnetic variation	(NOT USED)	
S	Mode indicator : ASCII 'E' = Easterly variation substracts from True course ASCII 'W' = Westerly variation adds to true course	(NOT USED)	
М	Positioning system Mode indicator (Note 2) : ASCII 'A' = Autonomous mode ASCII 'D' = Differential mode ASCII 'E' = Estimated (dead reckoning) mode ASCII 'B' = Manual input mode ASCII 'S' = Simulator N= Data not valid Warning : Shall not be blank field	(USED)	
hh	NMEA checksum		

Note 1: Speed in RMC telegram is only used in "INS algorithm based" products and input to algorithm as EM LOCH data. If position is valid, speed is not taken into account by algorithm. If position is invalid speed is taken into account by algorithm. RMC telegram should be declared as position and speed input if both position and/or speed need to be used.

Note 2: For GLL or RMC telegram, the Mode indicator field supplements the status field. The status field shall be set to 'V' (data invalid) for all values of operating mode except for 'A' and 'D' (Autonomous and Differential).

3.1.2.7 \$--VBW Frame

\$VBW,x.x,x.x,A,x.x,A,x.x,A,x.x,A*hh <cr><lf></lf></cr>			
x.x	Longitudinal DVL (XV1) water speed, in knots, '-' = astern.	(USED)	
x.x	Transverse DVL (XV2) water speed, in knots, '-' = port.	(USED)	
A	Status of DVL water speed, A=Data valid. V= data invalid	(USED)	
x.x	Longitudinal DVL (XV1) ground speed, in knots, '-' = astern.	(USED)	
x.x	Transverse DVL (XV2) ground speed, in knots, '-' = port.	(USED)	
A	Status of DVL ground speed: A = data valid V = data invalid	(USED)	
x.x	Stern transverse water speed in knots.	(NOT USED)	
A	Status of stern water speed.	(NOT USED)	
x.x	Stern transverse ground speed in knots.	(NOT USED)	
A	Status of stern ground speed.	(NOT USED)	
hh	NMEA checksum		

3.1.2.8 \$--VHW Frame

\$VHW, x.x ,T, x.x ,M,x.x,N,x.x,K*hh <cr><lf></lf></cr>		
x.x	Heading, degrees true	(USED)
Т	True	(USED)
x.x	Heading, degrees magnetic	(NOT USED)
М	Magnetic	(NOT USED)
x.x	Speed in knots	(USED)
Ν	Knots	(USED)
x.x	Speed in km/h	(NOT USED)
к	Kilometers/hour	(NOT USED)
hh	NMEA checksum	

3.1.2.9 \$--VTG Frame

\$VTG,x.x,T,x.x,M,x.x,N,x.x,K,a*hh <cr><lf></lf></cr>		
x.x	Course over ground, degrees true	(USED)
Т	True	(USED)
x.x	Course over ground, degrees magnetic	(NOT USED)
М	Magnetic	(NOT USED)
x.x	Speed over ground in knots	(USED)
N	Knots	(USED)
x.x	Speed over ground in Km/h	(NOT USED)
К	Km/h	(NOT USED)
а	Mode indicator A= Autonomous mode D= Differential mode E= Estimated (dead reckoning) mode M= Manual input mode N= Data not valid The positioning system mode indicator field should be a null field.	(USED if not a null field)
hh	NMEA checksum	

3.1.2.10 \$--ZDA Frame

\$ZDA,hhm		
hhmmss.ss	UTC of the last PPS	(USED)
dd	UTC day	(USED)
mm	UTC month	(USED)
уууу	UTC year	(USED)
hh	Local zone hour (Note 1)	(USED)
mm	Local zone minutes (Note 1)	(USED)
hh	NMEA checksum	

Note 1: Data read and transmitted to certain output telegrams (i.e: GPS LIKE). The data is not used by the algorithm.

3.2 Output NMEA Frame Definition

This section described all NMEA 0183 frames being common in several outputs protocols. Refer to the section 4.4 to know exactly which frames are output by the NMEA compatible protocols.

3.2.1 NON STANDARD NMEA TELEGRAMS

3.2.1.1 \$GPGGA Frame

\$GPGGA,hhmmss.ss,LLII.IIIIIIII,a,LLLII.IIIIIIII,a,x,xx,x.xxx,x.xxx,M,x.xxx,M,x.xxx,xxx*hh <cr><lf></lf></cr>			
hhmmss.ss	UTC time of position		
LLII.IIIIIII	Latitude in degrees (LL) and in minutes (II.IIIIIII)		
а	'N' for Northern hemisphere, 'S' for Southern hemisphere		
	Longitude in deg (LLL) and in minutes (II.IIIIIII)		
а	'E' for East, 'W' for West		
х	GPS quality indicator		
хх	Number of satellites in use	Note 1	
x.xxx	Horizontal dilution of precision (HDOP)		
x.xxx	Antenna altitude above mean sea level (geoid) (meters)		
М	Unit of antenna altitude (fixed character = 'M' for meters)		
x.xxx	Geoidal separation	Note 1	
М	Unit of Geoidal separation (fixed character = 'M' for meters)		
x.xxx	Age of the differential GPS data	Note 1	
хххх	Differential reference station ID	Note 1	
hh	NMEA checksum		

Note 1: Copy of last GPS values received. When no GPS has been received since power up, these fields are null except for number of satellites in use set to 3 by default.

3.2.1.2 \$GPGLL Frame

\$GPGLL,LLII.IIIIIII,a,LLLII.IIIIIII,a,hhmmss.ss,a,m*hh <cr><lf></lf></cr>			
LLII.IIIIIII	Latitude in degrees (LL) and in minutes (II.IIIIIII)		
а	'N' for Northern hemisphere, 'S' for Southern hemisphere		
LLLII.IIIIIII	Longitude in deg (LLL) and in minutes (II.IIIIIII)		
а	'E' for East, 'W' for West		
hhmmss.ss	UTC time of position		
а	Status 'A' for Data Valid, 'V' for Data Invalid		
m	Mode indicator 'A', 'D' or 'E'		
hh	NMEA checksum		

3.2.1.3 \$GPGST Frame

\$GPGST,hhmmss.ss,x.x,x.x,x.x,x.x,x.x,x.x*hh <cr><lf></lf></cr>			
hhmmss.ss	UTC Time		
x.x	RMS value of the standard deviation on pseudo-ranges	Note 1	
x.x	Standard deviation of semi-major axis of error ellipse in meters		
x.x	Standard deviation of semi-minor axis of error ellipse in meters		
x.x	Orientation of semi-major axis of error ellipse		
x.x	Standard deviation of the error of Latitude in meters		
x.x	Standard deviation of the error of Longitude in meters		
x.x	Standard deviation of the error of Altitude		
hh	NMEA checksum		

Note 1: Copy of last GPS values received. When no GPS has been received since power up, these fields are null except for number of satellites in use set to 3 by default.

3.2.1.4 \$GPVTG Frame

\$GPVTG,x.xxx,T,x.xxx,M,x.xxx,N,x.xxx,K,a*hh <cr><lf></lf></cr>			
x.xxx	True course (deg)		
Т	Fixed character = 'T'		
x.xxx	Magnetic course (deg)		
М	Fixed character = 'M'		
x.xxx	Speed (knots)		
Ν	Fixed character = 'N'		
x.xxx	Speed (km/h)		
к	Fixed character='K'		
а	Positioning system mode indicator 'A', 'D' or 'E'		
hh	NMEA checksum		

3.2.1.5 \$GPZDA and \$PHZDA Frame

"—" in the header is either GP or PH.

\$ZDA,hhmmss.ss,dd,mm,yyyy,hh,mm*hh <cr><lf></lf></cr>		
hhmmss.ss	UTC time of PHINS	
dd	UTC day	
mm	UTC month	
уууу	UTC year	
hh	Local zone hours	Note 1
mm	Local zone minutes	Note 1
hh	NMEA checksum	

Note 1: Copy of last GPS values received. When no GPS has been received since power up, these fields are null except for number of satellites in use set to 3 by default.

3.2.1.6 **\$PHCMP Frame**

\$PHCMP,IIII.II,a,x.xx,N*hh <cr><lf></lf></cr>		
1111.11	Latitude in degrees (two first I) and in minutes (four last I)	
а	'N' for Northern hemisphere and 'S' for Southern hemisphere	
x.xx	Speed Norm in knots	
N	Fixed character = 'N'	
hh	NMEA checksum	

3.2.1.7 \$PHHRP Frame

\$PHHRP,sxx,d,hhhhhhhhh*hh <cr><lf></lf></cr>		
S	+ for Clockwise - for Counter Clockwise	
xx	Number of heading turn since the last reset	
d	ʻd' fix character	
hhhhhhh	User Status	Hexadecimal value
hh	NMEA checksum	

3.2.1.8 \$PHINF Frame

\$PHINF,hhhhhhhhh*hh <cr><lf></lf></cr>		
hhhhhhh	User Status	
hh	NMEA checksum	Hexadecimal value

3.2.1.9 \$PHLIN Frame

\$PHLIN,x.xxx,y.yyy,z.zzz*hh <cr><lf></lf></cr>		
x.xxx	surge in meters (signed)	
у.ууу	sway in meters (signed)	
Z.ZZZ	Heave in meters (signed)	
hh	NMEA checksum	

3.2.1.10 \$PHPOS Frame

\$PHPOS,x.xxx,y.yyy,z.zzz,x.xxx,y.yyy,z.zzz *hh <cr><lf></lf></cr>		
x.xxx	Surge in m	With Selected Lever Arm
у.ууу	Sway in m	
z.zzz	Heave in m	
x.xxx	Surge in m	Without Lever Arm
у.ууу	Sway in m	
z.zzz	Heave in m	
hh	NMEA checksum	

3.2.1.11 \$PHROT Frame

\$PHROT,x.xxx,y.yyy,z.zzz*hh <cr><lf></lf></cr>		
x.xxx	Roll speed in °/s (signed)	
у.ууу	Pitch speed in °/s (signed)	
Z.ZZZ	Heading speed in °/s (signed)	
hh	NMEA checksum	

3.2.1.12 \$PHSPD Frame

\$PHSPD,x.xxx,y.yyy,z.zzz*hh <cr><lf></lf></cr>		
x.xxx	Surge speed in m/s (signed)	
у.ууу	Sway speed in m/s (signed)	
z.zzz	Heave speed in m/s (signed	
hh	NMEA checksum	

3.2.1.13 \$PHTRH Frame

\$PHTRH,x.xx,a,y.yy,b,z.zz,c*hh <cr><lf></lf></cr>		
x.xx	Pitch in degrees	
а	'M' for bow up and 'P' for bow down	
у.уу	Roll in degrees	
b	'B' for port down and 'T' for port up	
z.zz	Heave absolute value in meters	
с	'O' if OCTANS goes up and 'U' if OCTANS goes down	
hh	NMEA checksum	

3.2.1.14 \$PHTRO Frame

\$PHTRO,x.xx,a,y.yy,b*hh <cr><lf></lf></cr>		
x.xx	Pitch in degrees	
а	'M' for bow up and 'P' for bow down	
у.уу	Roll in degrees	Pitch and Roll fields are empty if HRP_INVALID is set in user status
b	'B' for port down and 'T' for port up	
hh	NMEA checksum	

3.2.1.15 \$PHVIT Frame

\$PHVIT,x.xxx,y.yyy,z.zzz,x.xxx,y.yyy,z.zzz *hh <cr><lf></lf></cr>		
x.xxx	Surge speed in m/s	With Selected Lever Arm
у.ууу	Sway speed in m/s	
Z.ZZZ	Heave speed in m/s	
x.xxx	Surge speed in m/s	Without Lever Arm
у.ууу	Sway speed in m/s	
Z.ZZZ	Heave speed in m/s	
hh	NMEA checksum	

3.2.1.16 \$STALG Frame

\$STALG,aaaaaaaa,bbbbbbbbbbbbbbbbbbbbbbbbbbbb		
aaaaaaaa	Algorithm status 1	
bbbbbbbb	Algorithm status 2	Hexadecimal value
hh	NMEA checksum	

3.2.1.17 \$STSOR Frame

\$STSOR,aaaaaaaa,bbbbbbbbbbbbbbbbbbbbbbbbbbbb		
aaaaaaaa	Sensor status 1	
bbbbbbbb	Sensor status 2	Hexadecimal value
hh	NMEA checksum	

3.2.1.18 **\$STSYS** Frame

\$STSYS,aaaaaaaa,bbbbbbbbbbbbbbbbbbbbbbbbbbb		
aaaaaaaa	System status 1	
bbbbbbbb	System status 2	Hexadecimal value
hh	NMEA checksum	

3.2.1.19 \$TIME_ Frame

\$TIME_,hhmmss.sss*hh <cr><lf></lf></cr>		
hh	Hours	
mm	Minutes	System Time or UTC Time if time
SS.SSS	Seconds	synchronized
hh	NMEA checksum	

3.2.2 STANDARD NMEA TELEGRAMS

3.2.2.1 \$HEALC Frame

This frame is sent to periodically report a list of active alerts. Parameters GGG, HHH, J and K are not sent if no active alert (D=0). It complies with standard IEC 61924-2 (Annex J and annex K).

\$HEALC,A,B,C,D,GGG,HHH,J,K]*hh <cr><lf></lf></cr>		
А	Total number of ALF sentences	Fixed to 1
В	Sentence number	Fixed to 1
С	Sequential message identifier	Fixed to 1
D	Number of alert entries	0 if no active alert, 1 if one active alert
GGG	Manufacturer mnemonic	Empty (standardized alert identifier used)
ННН	Alert identifier	Fixed to 240 for a gyrocompass (Note 1)
J	Alert instance	Fixed to 1
К	Revision counter	Starts at 1 and is incremented up to 99 after each alert status change in ALF message. Resets to 1 after 99 is used.
hh	NMEA checksum	

Note 1: See IEC 61924-2, Annex J, §J.5, Table J.3.

3.2.2.2 \$HEALR Frame

This frame is used for compatibility with old NMEA standard to inform on alert state. It is transmitted each time the alert status changes, or each 30 seconds to update the upper system with active alert list, even if no alert is present. It complies with standard IEC 61924-2 (Annex L).

\$HEALR,HHMMSS.SS,XXX,A,B,C*hh <cr><lf></lf></cr>		
HHMMSS.SS	Time	Current time (UTC time if the system is synchronized in UTC, or internal time otherwise) in hour, minute and seconds.
xxx	Unique Alert Identifier	Fixed to 240 for a gyrocompass
A	Alert condition	'A' if alert condition is raised'V' if alert condition is cleared
В	Alert acknowledge state	'V' if not acknowledged 'A' if acknowledged
С	Description text	"System fault"
hh	NMEA checksum	

3.2.2.3 \$HEARC Frame

This frame is sent to refuse incoming bad formatted alert commands. It complies with standard It complies with standard IEC 61924-2 (Annex J and annex K).

\$HEARC,HHMMSS.SS,AAA,BBB,C,D*hh <cr><lf></lf></cr>		
HHMMSS.SS	Time	Time of last alarm state change (UTC time if the system is synchronized in UTC, or internal time otherwise) in hour, minute and seconds.
AAA	Manufacturer mnemonic	Empty (standardized alert identifier used)
BBB	Alert identifier	Fixed to 240 for a gyrocompass (Note 1)
С	Alert instance	Repetition of received instance that was refused
D	Refused alert command	Repetition of received command character that was refused: 'A','Q', 'O', 'S' of ACN telegram.
hh	NMEA checksum	

Note 1: See IEC 61924-2, Annex J, §J.5, Table J.3.

3.2.2.4 \$HEALF Frame

This frame is the new format for alert state reporting.

It is sent only when the alert status changes or on alert request from ACN telegram. It complies with standard IEC 61924-2 (Annex J and annex K).

\$HEALF,A,B,C,HHMMSS.SS,D,E,F,GGG,HHH,J,K,L,MM*hh <cr><lf></lf></cr>		
А	Total number of ALF sentences	Fixed to 1
В	Sentence number	Fixed to 1
С	Sequential message identifier	Fixed to 1
HHMMSS.SS	Time	Time of last alert state change (UTC time if the system is synchronized in UTC, or internal time otherwise) in hour, minute and seconds.
D	Alert category	Fixed to 'B' for a gyrocompass
E	Alert priority	Fixed to 'W' for a gyrocompass
F	Alert state	 'V' for active - unacknowledged 'S' for active – silenced 'A' for active – acknowledged 'O' for active – responsibility transferred 'U' for rectified – unacknowledged 'N' for normal – no alert active
GGG	Manufacturer mnemonic	Empty (standardized code)
ннн	Alert identifier	Fixed to 240 for a gyrocompass
J	Alert instance	Fixed to 1
К	Revision counter	Starts at 1 and is incremented up to 99 after each change of content of any field of the alert (i.e.: time, status). Resets to 1 after 99 is used.
L	Escalation counter	Starts at 0 and is incremented up to 9 each time the active-unacknowledged timer elapses. Resets to 1 after 9 is used.
MM	Description text	Fixed to "System fault"
hh	NMEA checksum	

3.2.2.5 \$HEHBT Frame

This frame is used to ensure that the link with other system is constant and not interrupted. It also provides system status. It complies with IEC 61162-1 (2010-11).

\$HEHBT,xx,s,x*hh <cr><lf></lf></cr>		
xx,	Sentence's output period in seconds	Fixed 30 seconds (Note 1)
a,	Status	Set to 'V' when alert condition is raised
	'A' for "Equipment in normal operation"	Set to 'A' when alert condition is cleared
	'V' for "Equipement not in normal operation"	
х,	Output counter cycling from 0 to 9	
hh	NMEA checksum	

Note 1: 30 s is based on the that any alert modification status should be reported at a period not exceeding 60 s (cf. IEC 61924-2, Annex J) and that ALC telegram must be updated and sent at least every 30 s (cf. IEC 61924-2, Annex K, §K.3). We take the smallest value here which is 30 s.

3.2.2.6 \$HEHDT Frame

\$HEHDT,x.x	x,T*hh <cr><lf></lf></cr>	
x.x	True heading in degrees. Empty if HRP INVALID is set in user status	Note 1
т	Fixed ASCII character 'T'	
hh	NMEA checksum	

Note 1: 2 digits after the decimal point in default mode.

5 digits after the decimal point in military mode.

Always 2 digits after the decimal point in case of udp library protocol

3.2.2.7 \$HEROT Frame

\$HEROT,x.	x,S*hh <cr><lf></lf></cr>	
x.x	Heading rate of turn, in deg/mn	Note 1
	Sign '–' when bow turns to port	
	Status	
S	ASCII 'A' for data valid	
	ASCII 'V' for data invalid	
hh	NMEA checksum	

Note 1: 2 digits after the decimal point in default mode. 5 digits after the decimal point in military mode. Always 2 digits after the decimal point in case of udp library protocol

3.2.2.8 \$HETHS Frame

\$HETHS,x.>	⟨,a*hh <cr><lf></lf></cr>	
x.x	True heading in degrees	Note 1
а	Mode indicator character	Note 2
hh	NMEA checksum	

Note 1: 2 digits after the decimal point in default mode5 digits after the decimal point in military modeAlways 2 digits after the decimal point in case of udp library protocol

Note 2:

Mode indicator	Set condition	Output priority level
A = Autonomous	Default value	Low
E = Estimated (dead-reckoning)	N/A	N/A
M = Manual input	N/A	N/A
S = Simulator Mode	System status 2: SIMULATION_MODE	Medium
V = Data not valid	User status : HRP_INVALID	High

\$HETHS,,V*hh<CR><LF>

3.2.2.9 \$PHTRH Frame

\$PHTRH,x.x	x,a,y.yy,b,z.zz,c*hh <cr><lf></lf></cr>	
x.xx	Pitch in degrees	
а	'M' for bow up and 'P' for bow down	
у.уу	Roll in degrees	
b	'B' for port down and 'T' for port up	
z.zz	Heave absolute value in meters	
с	'U' if OCTANS goes up and 'O' if OCTANS goes down	
hh	NMEA checksum	

3.3 Checksum

An usual NMEA sentence is formatted as follows: \$aaccc,c ... c*hh<CR><LF> "hh" is the checksum of the sentence, and allows for a control during data transmission, to check if there is any missing or corrupted field.

This checksum is the absolute value calculated by exclusive-O'Ring the 8 data bits (no start bits or stop bits) of each character in the sentence, but excluding "\$" and "*".

The hexadecimal value of the most significant and least significant 4 bits of the result is converted to two ASCII (0-9, A-F).

The most significant character is transmitted first.

The checksum field is required in all transmitted sentences.

4 **DIGITAL INTERFACES**

4.1 Heart beat management

The heart beat mechanism is used to monitor integrity of a connection between two systems over NMEA link.

The heart beat message is sent at fixed 30 second period. The status contained in the heartbeat message is set to "A" when the system is operating normally (Heading is valid), and to "V" when the system is not operating normally (i.e.: Heading invalid due to initial coarse alignment or when a sensor error is present).

The heart beat output is:

- not available on the repeater output port in serial and Ethernet
- available on any output port configured to output NMEA or text protocols (ASCII).

The heart beat management can be enabled port by port from the web-based user interface, refer to the "Web-based interface user guide" document (Ref. MU-INSIII-AN-021).

4.2 Alerts Management

Following the standard IEC 61924-2 (Marine navigation and radio-communication equipment and systems – Integrated Navigation Systems – Part 2: Modular structure for INS – Operational and performance requirements, methods of testing and required test results) two types of alert mechanism are now available:

- Old format: ALR/ACK alarm mechanism, see Figure 5 for the old alarm state diagram; Refer to NMEA frames definition to get more details about these messages.
 - The ALR message is sent each time the alarm status changes: activated, acknowledged or reset
 - The system decodes ACK messages to acknowledge change in current alert state.
 These changes are then reported in ALR telegram.
- New format: ALF/ALC/ARC new alarm mechanism, see Figure 6 for the new alarm state diagram. The system sends an ALF sentence each time the alarm internal state changes.

Refer to NMEA frames definition to get more details about these messages.

Both alarm mechanism are:

- available on all input ports including the repeater input port (serial and Ethernet), as long as the "ALERT IN" protocol is selected.
- · not available on the repeater output port

Old and New format alert telegrams available on any output port configured to output NMEA or text protocols (ASCII).

The alarm and heart beat management telegrams can be configured port by port from the web-based user interface, refer to the "Web-based interface user guide" document (Ref. MU-INSIII-AN-021).

The alarms are only triggered when the system is in alignment or when a sensor error is present that produces invalid heading information.

Figure 5 – Old alarm state diagram

Figure 6 – New alarm state diagram

4.3 Input Protocols

The OCTANS serial input protocols are used to enter data from external sensors (vessel speed and latitude, date and time) into OCTANS. All OCTANS serial input protocols are hard-coded into OCTANS. They are listed by their name when configuring the input serial port with the WEB-based User Interface.

A list of all available input protocols is given below. The specifications for each serial input protocol are given in the following pages.

4.3.1 QUICK GUIDE TO INPUT PROTOCOLS

							На	rd (Cod	ed						
										NME	A ST	AND	ARD)		
PROTOCOLS	DCN STD LOCH	DCN STD NAV 1	IXBLUE STD BIN v2	IXBLUE STD BIN V3	MINIFOG_GPS_MSG	ACK	ACN	GGA	0TT	GST	RMC	UTC	VBW	МНЛ	ZDA	VTG
PRODUCTS			Ch	eck i	f the	pro	toco	l is a	vaila	able 1	for y	our j	prod	uct		
OCTANS V / OCTANS 3000	✓	✓	✓	✓		✓	✓	✓	✓	✓	✓	✓	\checkmark	✓	✓	✓
OCTANS NANO					\checkmark			\checkmark	✓		\checkmark	\checkmark	✓	✓	✓	
PARAMETER																
UTC TIME			Х	Х				Х	Х		Х	Х			Х	Х
POSITION UTC TIME STAMP								Х	Х							
POSITION LATITUDE		Х	Х	Х	Х			Х	Х		Х					
POSITION LONGITUDE			Х	Х	Х			Х	Х		Х					
POSITION QUALITY INDICATOR								Х								
POSITION X,Y SD										Х						
ALERT MANAGEMENT(*)						Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х
SPEED	Х	Х	Х	Х							Х		Х	Х		Х
NMEA 0183 STANDARD						Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х
BINARY	Х	Х	Х	Х												
ASCII					Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х

 $(\ensuremath{^*})$ Can receive and manage ALERT ACK or ACN messages if this protocol is selected

4.3.2 DETAILED SPECIFICATIONS FOR INPUT PROTOCOLS

DCN Std Loch

This protocol is not available for all products.

Refer to the tables of the section 4.3.1 to know if this protocol is available for your product.

- Standard: Binary protocol (Spec DCN n° 19188 LSM/NAV Rev 1 March 90)
- Data received: EM LOG data
- Data frame:

The frame contains 3 bytes in binary format without header and "end of frame" fields. It is advisable to use the Timeout to synchronize the frames.

Important

Protocol is received at 600 bps, which may not be standard in all systems..

Message	e <f0><f′< th=""><th>1><f2></f2></th><th></th><th></th></f′<></f0>	1> <f2></f2>		
Field 0	Byte 0	Status byte	Bit 7: Operational (0:Yes, 1: No)	(USED)
			Bit 6: Damage (0:No, 1: Yes)	(USED)
			Bit 5: Simulation mode (0:No, 1: Yes)	(USED)
			Bit 4: Test (0:No, 1: Yes)	(USED)
			Bit 3: Reserved	(NOT USED)
			Bit 2: Reserved	(NOT USED)
			Bit 1: Reserved	(NOT USED)
			Bit 0: Reserved	(NOT USED)
Field 1	Byte 1	Loch speed	Bit 7: Sign (0:Positive, 1: Negative)	(USED)
		MSB	Bit 6: MSB = 30 knots	
			Bit 0	
Field 2	Byte 2	Loch speed	Bit 7	(USED)
		LSB		
			Bit 0	

Notes

- The Data is not two complemented; Bit 7 of Byte 1 is the sign and (Byte 1, Bit 6) to (Byte 0, Bit 0) is the absolute value of the log data.
- The input data is declared valid by OCTANS algorithm only if all Bits 4 to 7 equal 0.
- Each byte is sent LSBit first. For data coded on several bytes, the bytes are sent MSByte first.

DCN Standard Nav 1

This protocol is not available for all products.

Refer to the tables of the section 4.3.1 to know if this protocol is available for your product.

- Standard: DCN Nav protocol 100m network (Spec DCN N°19187 LS/NAV Jun96)
- Data received: Latitude, Speed
- Data frame:

The frame contains 27 bytes in binary format.

Message <f< th=""><th>)><f1><f18></f18></f1></th><th></th><th></th></f<>)> <f1><f18></f18></f1>		
Field 0	Bytes 0 to 2	Header	Byte 0: 27
			Byte 1: Unused
Field 1	Byte 3	Status	Bit 7: Operational (0:Yes, 1:No)
Field 2	Bytes 4 to 7	Hour	Unused
Field 3	Byte 8	Aging	Unused
Field 4	Bytes 9 to 11	Heading	Unused
Field 5	Bytes 12 to 13	Relative Roll	Unused
Field 6	Bytes 14 to 16	Pitch	Unused
Field 7	Bytes 17 to 19	Latitude	24bits Two complement (+90° to -90°)
Field 8	Bytes 20 to 22	Longitude	Unused
Field 9	Bytes 23 to 24	North Speed	16 bits Two complement
			(+120m/s to -120m/s)
Field 10	Bytes 25 to 26	West Speed	Unused

IXBLUE STANDARD BIN V2, V3

This protocol is not available for all products. Refer to the tables of the section 4.3.1 to know if this protocol is available for your product.

To get details on this protocol, refer to IXBLUE STANDARD BIN V2, V3 description.

MINIFOG GPS MSG

This protocol is not available for all products.

Refer to the tables of the section 4.3.1 to know if this protocol is available for your product.

- Standard: Binary protocol
- Data received: Latitude, longitude
- Data frame:

MiniFOG_GPS_	_MSG (Geograp	hical Position Message)	Comments
Header	Byte 1	Value : 'G'	Delimiter to identify the start of message
Whole	Byte 2 to 3	Value : In degrees, range in	Whole latitude provided by an external
Latitude		[0°:90°]	GPS sensor, in WGS84,
			LSB = 1°
Decimal	Byte 4 to 9	Value : In degrees, range in	Decimal latitude provided by an external
Latitude		[0°:1°[GPS sensor, in WGS84,
			LSB = 0.000001°
Latitude	Byte 10	Value : 'N' or 'S'	North or South latitude direction
direction			
Whole	Byte 11 to 13	Value : In degrees, range in	Whole longitude provided by an external
Longitude		[0°:180°]	GPS sensor, in WGS84,
			LSB = 1°
Decimal	Byte 14 to 19	Value : In degrees, range in	Decimal longitude provided by an
Longitude		[0°:1°[external GPS sensor, in WGS84,
			LSB = 0.000001°
Longitude	Byte 20	Value : 'E' or 'W'	East or West longitude direction
direction			
End point	Byte 21	Value : <cr></cr>	Carriage return
	Byte 22	Value : <lf></lf>	Line feed

Example:

A packet reading "G57279167N002256944W<cr><If>"

Will be *Latitude* 57°16'45"N and *Longitude* 2°15'25W.

NMEA – ACK

This protocol is not available for all products. Refer to the tables of the section 4.3.1 to know if this protocol is available for your product.

- Standard: Input NMEA 0183
- Data frame: it is composed of
- □ \$--ACK frame see section 3.1.2.2

NMEA – ACN

This protocol is not available for all products. Refer to the tables of the section 4.3.1 to know if this protocol is available for your product.

- Standard: Input NMEA 0183
- Data frame: it is composed of
- □ \$--ACN frame see section 3.1.1

NMEA –GGA

This protocol is not available for all products. Refer to the tables of the section 4.3.1 to know if this protocol is available for your product.

- Standard: Input NMEA 0183
- Data received: Time, latitude, longitude, GPS quality indicator
- Data frame: it is composed of
 - □ \$--GGA frame see section 3.1.2.3

NMEA –GLL

This protocol is not available for all products. Refer to the tables of the section 4.3.1 to know if this protocol is available for your product.

- Standard: Input NMEA 0183
- Data received: Latitude, longitude, UTC, status
- Data frame: it is composed of
 - □ \$--GLL frame see section 3.1.2.4

NMEA –GST

This protocol is not available for all products. Refer to the tables of the section 4.3.1 to know if this protocol is available for your product.

- Standard: Input NMEA 0183
- Data received: UTC, standard deviation
- Data frame: it is composed of
 - □ \$--GST frame see section 3.1.2.5.

NMEA – RMC

This protocol is not available for all products. Refer to the tables of the section 4.3.1 to know if this protocol is available for your product.

- Standard: Input NMEA 0183
- Data received: Status, latitude, longitude, speed, magnetic variation
- Data frame: it is composed of
 - □ \$--RMC frame see section 3.1.2.6

NMEA –UTC

This protocol is not available for all products. Refer to the tables of the section 4.3.1 to know if this protocol is available for your product.

- Standard: Input NMEA 0183
- Data received: UTC, date, position fix type
- Data frame: it is composed of
 - □ \$--UTC frame see section 3.1.1.1

NMEA-VBW

This protocol is not available for all products. Refer to the tables of the section 4.3.1 to know if this protocol is available for your product.

- Standard: Input NMEA 0183
- Data received: Longitudinal DVL, transverse DVL, stern and transverse water speed
- Data frame: it is composed of
 - □ \$--VBW frame see section 3.1.2.7

NMEA –VHW

This protocol is not available for all products. Refer to the tables of the section 4.3.1 to know if this protocol is available for your product.

- Standard: Input NMEA 0183
- Data received: Heading, speed
- Data frame: it is composed of
 - □ \$--VHW frame see section 3.1.2.8

NMEA –VTG

This protocol is not available for all products. Refer to the tables of the section 4.3.1 to know if this protocol is available for your product.

- Standard: Input NMEA 0183
- Data received: Course over ground, speed, mode indicator
- Data frame: it is composed of
 - □ \$--VTG frame see section 3.1.2.9

NMEA –ZDA

This protocol is not available for all products. Refer to the tables of the section 4.3.1 to know if this protocol is available for your product.

- Standard: Input NMEA 0183
- Data received: Date and time
- Data frame: it is composed of
 - \$--ZDA frame see section 3.1.2.10

4.4 Output Protocols

The OCTANS output protocols are used to output OCTANS data to external systems. A part of the OCTANS output protocols are hard-coded into OCTANS, and others are of library protocol type.

Hard-coded protocols are listed by their name when configuring the output port with the Web MMI, library protocols are configured by selecting them "From the library" in the MMI and then select the appropriate file on the installation CDROM.

A list of all available standard output protocols is given in the following page. It allows for a quick search of the most appropriate serial output protocol depending on requirement.

The specifications for each output protocol are given in the following pages. Unless duly specified in the protocol specification, standard OCTANS conventions are used for data output (refer to "Principles & Conventions" document (ref.: MU-INS&AHRS-AN-003) for detail on OCTANS conventions).

Information supplied by protocols is valid for the monitoring point described:

- By its lever arm to OCTANS center of measurement (refer to "Principles & Conventions" document (ref.: MU-INS&AHRS-AN-003) for the Lever Arm definition).
- By the misalignment angles to OCTANS reference frame i.e. in the vessel reference frame.

PAGE LEFT INTENTIONALLY BLANK

4.4.1 QUICK GUIDE TO OUTPUT PROTOCOLS

																				H	ARD) C (DDE	D																		
PROTOCOLS	AHRS120	AMS	ANSCHUTZ STD 20	ATLAS FANSWEEP 20	B&A CUSTOM 1	B&A CUSTOM 2	DCN STD NAV 1	DCN STD NAV 10	DOLOG HRP	GYROCOMPAS 1	GYROCOMPAS 2	HEAVE POSTPRO	НЕНDТ	HEHDT FIXED	HEHDT HEROT	HETHS HEROT	IG03	IMU BINARY	IMU RAW DATA	IXBLUE STD BIN V2	IXBLUE STD BIN V3	IXSEA ICCB1	IXSEA TAH	MAHRS	MINIFOG_OTG_MSG8	MOTION SENSOR 1	MOTION SENSOR 2	MOTION SENSOR 3	MOTION SENSOR 4	OCTANS STANDARD	PAHRS	POS MV GROUP 111	POSTPROCESSING	PINIHPR BEVN 010	F SAN UIS	SEAFATH SEATEX DHEAVE	SHINKALGEON HDT	TAH BIN	TAH BIN SMT	TECHSAS	TMS CCV IMBAT AHRS	TUS
PRODUCTS																С	hecl	k if tl	ne p	rotoc	ol is	s ava	ilab	e fo	<mark>r yοι</mark>	ır pro	oduct												_			
OCTANS / OCTANS 3000	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓		✓	✓	✓	✓	√ ,	1	/ •		✓	´ √	′ √	 ✓ 	✓	✓	✓	✓	✓
OCTANS NANO		✓			✓	✓			✓	✓			✓	✓	✓	✓	✓			✓					✓					✓		٧	< '							✓	✓	
PARAMETERS																																										
POLAR HEADING																															X											
HEADING	Х	х	х		х	х	х	х	х	х	х		х	х	х	х	х			х	х	х	Х	х	х	х	х	х	х	x	x)	<	X		X	х	х	x	х	х
ROLL		х		Х	Х	Х	Х	Х	х	Х	Х						Х			Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	X	x			< X	X		Х	Х	Х	Х	х	Х
PITCH		Х		Х	Х	Х	Х	Х	Х	Х	Х						Х			Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	X	X			< X	X		Х	Х	Х	Х	Х	Х
HEADING SD																																										
ROLL SD																																										
PITCH SD																																										
DELAYED HEAVE												Х								Х	Х											<				Х						
HEAVE WITH LVA				Х	Х	Х	Х	Х			Х	Х								Х	Х		Х	Х		Х	Х	Х	X			<mark>< </mark>		X	X	<u> </u>	X	Х	Х		Х	
SURGE WITH LVA						Х						Х								Х	Х		Х	Х		Х	Х	Х	X									Х	Х			
SWAY WITH LVA						Х						Х								Х	Х		Х	Х		Х	Х	Х	X									Х	Х			
HEAVE WITHOUT LVA																				Х	Х		Х						X													
SURGE WITHOUT LVA																													X													
SWAY WITHOUT LVA																													X													
HEAVE INFO (Mode,Period,Amp)												Х																														
HEAVE SPEED						Х														Х	Х		Х				Х	Х	Х	x								Х	Х			Х
SURGE SPEED						X														Х	Х		Х				Х	Х	Х	x								Х	X			Х
SWAY SPEED						X														Х	Х		Х				Х	Х	Х	x								Х	X			Х
HSS SPEED WITHOUT LVA																													x													
NORTH or SOUTH SPEED																																			X							i
EAST or WEST SPEED																																			X	C .						
VERTICAL SPEED																																			X							
ACCELERATION XV3												Х								Х	Х																				x	Х
ACCELERATION XV1												Х								Х	Х																				x	Х
ACCELERATION XV2												Х								Х	Х																				X	Х
ROLL RATE						Х			Х											Х	Х				Х						x				X	<u> </u>		Х			X	Х
PITCH RATE						Х			Х											Х	Х				Х						x				X	<u> </u>		Х			Х	Х
HEADING RATE			Х			Х			Х						х	Х				Х	Х		Х		Х						X				X			Х			X	Х
POLAR HEADING RATE																															x											
ROLL RATE smoothed																																							Х			
PITCH RATE smoothed																																							х			
HEADING RATE smoothed																																							х			
DATE OF DATA															1					Х	Х																					
TIME STAMP OF DATA												Х			1					Х	Х		Х									<		X	X	x		Х	X	X		
LATITUDE (*)		Х				1	Х										Х			Х	Х									X					X						\square	
LONGITUDE (*)							X													Х	Х														X							

Please use the table below to quickly select the output protocol that best suits your application.

AHRS –	Interface	Library
--------	-----------	---------

																				H/	ARD) CC	DDE	D																			
PROTOCOLS	AHRS120	AMS	ANSCHUTZ STD 20	ATLAS FANSWEEP 20	B&A CUSTOM 1	B&A CUSTOM 2	DCN STD NAV 1	DCN STD NAV 10	DOLOG HRP	GYROCOMPAS 1	GYROCOMPAS 2	HEAVE POSTPRO	НЕНDT	HEHDT FIXED	HEHDT HEROT	HETHS HEROT	IG03	IMU BINARY	IMU RAW DATA	IXBLUE STD BIN V2	IXBLUE STD BIN V3	IXSEA ICCB1	IXSEA TAH	MAHRS	MINIFOG_OTG_MSG8	MOTION SENSOR 1	MOTION SENSOR 2	MOTION SENSOR 3	MOTION SENSOR 4	OCTANS STANDARD	PAHRS	POS MV GROUP 111	POSTPROCESSING	PTNTHPR	PSXN 019	SEAPATH	SEATEX DHEAVE	SHINKAI 6500 HDT	TAH BIN	TAH BIN SMT	TECHSAS	TMS CCV IMBAT AHRS	TUS
ALTITUDE (*)																																				Х							
VESSEL SPEED (*)							Х													Х	Х	Х		Х																			
N TURNS SINCE RESET					Х	Х																																					
DATE and TIME (**)					Х	х				Х	X		х	х	х	Х								Х		Х	Х	Х	Х	x													
IMU DATAS (ACC,ROT,TEMP)																		Х	Х																								
OCT SYSTEM STATUS																				Х	Х									Х	Х												
OCT ALGO STATUS																				Х	Х			Х						Х													
OCT USER STATUS										Х	X									Х	Х					Х	Х	х	Х	х									Х	Х			x
OCT SENSOR STATUS																		Х	Х	Х	Х									Х													
OTHER STATUS		Х	Х	Х			Х	Х	Х			x					Х					Х			Х					х		Х		Х	Х	Х	Х				Х	X	
CHECKSUM					Х	Х			Х	Х	X		х	х	х	Х				Х	Х	Х	Х			Х	Х	Х	Х	х	Х	Х		Х	Х	Х	Х	Х	х	Х			
NMEA 0183					Х	Х				Х	X		Х	Х	Х	Х							Х			Х	Х	Х	Х	Х	X				Х								
BINARY			Х	Х			Х	Х	Х			X						Х	Х	Х	Х	Х										Х	Х			Х	Х	Х	Х	Х		X X	X
ASCII	Х	Х			Х	Х				Х	Х		Х	Х	Х	Х	Х						Х	Х	Х	Х	Х	Х	Х	Х	Х			Х	Х						Х		

(*) copy of manual or GPS input latitude, longitude and altitude or speed input (**) if ZDA tick box is checked a \$PHZDA telegram is added to the protocol output messages

AHRS – Interface Library

		UDP																
PROTOCOLS	HAM CUSTOM	HDMS THOMSON	IFREMER VICTOR	IFREMER VICTOR V3	JAMSTEC/KAIKOU	MDL (trim cube)	MDL 2	NMEA PRDID	PSXN 019	SIMRAD EM	STOLT OFFSHORE	TCM 1/2	TCM 2	TMS CCV IMBAT AHRS	TOKIMEC PTVF	TOKIMEC PTVG	TSS1/DMS	TSS335B
PRODUCTS				Che	ck if	the p	rotoc	ol is:	avail	able	for y	our p	orod	uct				
OCTANS / OCTANS 3000	>	>	>		~	~	>	>	>	✓	~	1	>	>	>	>	~	\checkmark
OCTANS NANO				✓		~	>	>			~	✓	>	>	>	>		
PARAMETERS																		
HEADING	х	х	х	х	х	х	х	х	х	х	х	х	х	х	х	х		
ROLL	х	Х	х	х	Х	Х	Х	Х	Х	х	Х	Х	Х	Х	х	х	Х	Х
PITCH	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х
HEAVE WITH LVA	Х	Х	Х	Х	Х				Х	Х				Х			Х	Х
ACCELERATION XV3	Х		Х	Х	Х									Х			Х	Х
ACCELERATION XV1			Х	Х	Х									Х				
ACCELERATION XV2			Х	х	Х									Х				
ACCELERATION XV1 XV2	Х																Х	Х
ROLL RATE			Х	Х	Х						Х			Х	Х			
PITCH RATE			Х	Х	Х						Х			Х	Х			
HEADING RATE			Х	Х	Х				Х		Х			Х	Х			
TIME STAMP OF DATA									Х									
DATE and TIME (**)								Х			Х				х	х		
OCT USER STATUS	Х																	
OTHER STATUS					Х		Х		Х	Х				Х	Х		Х	Х
CHECKSUM									Х									
NMEA 0183	Х							Х	Х		Х				Х	Х		
BINARY		Х	Х	Х	Х					Х				Х				
ASCII	Х					Х	Х	Х	Х		Х	Х	Х		Х	Х	Х	X

(**) if ZDA tick box is checked a \$PHZDA telegram is added to the protocol output messages

AHRS – Interface Library

PAGE LEFT INTENTIONALLY BLANK

AHRS – Interface Library

4.4.2 DETAILED SPECIFICATIONS FOR OUTPUT PROTOCOLS

AHRS 120

This protocol is not available for all products.

Refer to the tables of the section 4.4.1 to know if this protocol is available for your product.

• Standard ASCII output data format.

:D0xxx* <cr><lf></lf></cr>					
:D0	Hex 3A 44 30 – Start of sentence				
ххх	Hexadecimal representation of the decimal heading angle.	The heading angle is coded as an unsigned 12 bits integer , LSB = 180°/2 ¹¹ Note 1			
* <cr><lf></lf></cr>	Hex 2A 0D 0A – End of sentence				

Note 1:

123.4 degrees on the compass becomes $123.4 \times 2^{11}/180 = 1404.01$ decimal value. This decimal value, converted into its hexadecimal representation becomes 57C. The expected output ASCII string should be: ":D057C*<CR><LF>"

AMS

This protocol is not available for all products. Refer to the tables of the section 4.4.1 to know if this protocol is available for your product.

- Standard: AMS
- Data sent: Heading, Roll, Pitch, Latitude, Status
- Data frame: ASCII Format (concatenation of following described frames)

If ZDA tick box is checked a \$PHZDA telegram is added to the protocol output messages, refer to section 3.2.1.5.

<cr><lf>HEADING<sp>=<sp>hhh.hh</sp></sp></lf></cr>				
where	<sp></sp>	Space character		
	hhh.hh	True Heading in degrees		

<cr><lf>XTILT<sp>=<sp>appp.pp</sp></sp></lf></cr>					
where	<sp></sp>	Space character			
	а	a='+' when front up	Opposite of OCTANS convention		
		a='-' when front down			
	ppp.pp	Pitch in degrees			

<cr><lf< th=""><th colspan="5"><cr><lf>TILT<sp>=<sp>arrr.rr</sp></sp></lf></cr></th></lf<></cr>	<cr><lf>TILT<sp>=<sp>arrr.rr</sp></sp></lf></cr>				
where	<sp></sp>	Space character			
	а	a='+' when port up			
		a='-' when port down			
	rrr.rr	Roll in degrees			

<cr><lf< th=""><th colspan="5"><cr><lf>LAT<sp>=<sp>dd:mm:ss<sp>a</sp></sp></sp></lf></cr></th></lf<></cr>	<cr><lf>LAT<sp>=<sp>dd:mm:ss<sp>a</sp></sp></sp></lf></cr>				
where	<sp></sp>	Space character			
	dd	Latitude degrees			
	mm	Latitude minutes			
	SS	Latitude seconds			
	а	'N' or 'n' for Northern Hemisphere			
		'S' or 's' for Southern Hemisphere			

<cr><l< th=""><th colspan="6"><cr><lf>STATUS<sp>=<sp>sssss<cr><lf></lf></cr></sp></sp></lf></cr></th></l<></cr>	<cr><lf>STATUS<sp>=<sp>sssss<cr><lf></lf></cr></sp></sp></lf></cr>					
where	<sp></sp>	Space character				
	SSSSS	ASCII text string:				
		'VALID' : Heading, Roll and Pitch Valid				
		'NOT READY': Alignment				
		'FAIL': Any other case				

ANSCHUTZ STD 20

This protocol is not available for all products.

Refer to the tables of the section 4.4.1 to know if this protocol is available for your product.

- Standard: Anschutz Std20
- Data sent: Heading, Heading rate, Status
- Data frame: 18 bytes in binary format.

Byte 0	0x02	STX synchronizat	tion byte
Byte 1 Byte 2	01h ₁₅ h ₁₄ h ₁₃ h ₁₂ h ₁₁ h ₁₀ 01h ₉ h ₈ h ₇ h ₆ h ₅ h ₄	Heading MSB Heading LSB	Heading binary: h15h14h13h12h11h10h9h8h7h6h5h40000 LSB 360/2 ¹⁶ =0.00549 degree
Byte 3	0x40		
Byte 4	0x40		
Byte 5	0x40		
Byte 6	0x40		
Byte 7	0x40		
Byte 8 Byte 9 Byte 10	01s0xxxx 01xxxxxx 01xxxxxx 01xxxxxx	Opposite Heading Bit 5, s = Sign (0 Data is 2 compler LSB = 0.08046°/r Warning: opposite	g speed in °/min if positive, 1 if negative) ment binary coded with 16 bits and nin e heading rate
Byte 11 Byte 12	010b000f 01g10100	Status b = 1 => Anom or Co fg = 00 => Headi fg = 01 => Alignn fg = 11 => Defau	aly FOG or Accelerometer imputation Overload ing, Roll or Pitch not valid nent ilt value
Byte 13	0x40		
Byte 14	0x40		
Byte 15	0x43		
Byte 16	01ccccc	Checksum	FF XOR byte 1 to 15 AND 00111111 OR 01000000
Byte 17	0x03	ETX synchronizat	tion byte

ATLAS FANSWEEP 20

This protocol is not available for all products.

Refer to the tables of the section 4.4.1 to know if this protocol is available for your product.

- Standard: Atlas Fansweep 20
- Data sent: Roll, Pitch, Heave, Status
- Data frame: The frame contains 9 bytes in binary format (MSB are sent first).

Data	Length	Description
DLE	1 byte	0x10
Roll	2 bytes	<u>Unsigned</u> 16 bit, i.e. 065535 representing 360° with a resolution of 360°/65536 range 0360°
Pitch	2 bytes	<u>Unsigned</u> 16 bit, i.e. 065535 representing 360° with a resolution of 360°/65536 range 270°90°
Heave	2 bytes	<u>Signed</u> 16 bit range –32767 mm to + 32767 mm Sign '+' when Octans goes up
Status	1 byte	0x06 for alignment fully settled 0x07 for alignment settling
DLE	1 byte	0x10

B&A CUSTOM 1

This protocol is not available for all products. Refer to the tables of the section 4.4.1 to know if this protocol is available for your product.

- Standard: Output NMEA 0183 compatible
- Data sent: Heading, Roll, Pitch, Heave
- Data frame: It is composed of
 - NMEA \$HEHDT Frame see section 3.2.2.6
 NMEA \$PHTRH Non standard Frame see section 3.2.1.13
 NMEA \$PHHRP Frame see section 3.2.1.7
- (1) And, If ZDA option selected:
 - NMEA **\$PHZDA** Frame see section 3.2.1.5

(1

B&A CUSTOM 2

This protocol is not available for all products. Refer to the tables of the section 4.4.1 to know if this protocol is available for your product.

- Standard: Output NMEA 0183 compatible
- Data sent: Heading, Roll, Pitch, Heave, Surge, Sway, Linear Speeds, Rotation Speeds, Time and Date (1)
- Data frame: It is composed of

	NMEA \$HEHDT Frame	see section 3.2.2.6
	NMEA \$PHTRO Frame	see section 3.2.1.14
	NMEA \$PHLIN Frame	see section 3.2.1.9
	NMEA \$PHSPD Frame	see section 3.2.1.12
	NMEA \$PHROT Frame	see section 3.2.1.11
	NMEA \$PHTRH standard Frame	see section0
	NMEA \$PHHRP Frame	see section 3.2.1.7
) Ar	nd, If ZDA option selected:	
	NMEA \$PHZDA Frame	see section 3.2.1.5

DCN STD NAV 1

This protocol is not available for all products. Refer to the tables of the section 4.4.1 to know if this protocol is available for your product.

•	Standard:	DCN Nav protocol 100ms network
		(Spec DCN n° 19187 LSM/NAV June 96)

• Data sent: Status, Heading, Roll, Pitch, Heave

Data frame: 11 fields - 27 bytes and , once on ten, 20 fields - 40 bytes
 MSB are sent first.

Frame of 27 bytes sent 9 times out of 10

Message	Message <f0><f1><f18></f18></f1></f0>						
Field 0	Byte 0	Message size	Fixed value = 27				
Field 1	Byte 1	Status 1*	See status specification table 1				
Field 2	Byte 2	Status 2**	See status specification table 2				
Field 3	Bytes 3 to 6	Hour	Set to 0x00				
Field 4	Byte 7	Ageing	Fixed value = 4 ms				
Field 5	Bytes 8 to 10	Heading	Unsigned 24 bits integer $2^{23} = 180^{\circ}$				
Field 6	Bytes 11 to 13	Roll	Signed 24 bits integer +/-2 ²³ = +/-90° (Positive when port side down) Warning: Opposite sign of OCTANS usual convention.				
Field 7	Bytes 14 to 16	Pitch	Signed 24 bits integer $+/-2^{23} = +/-90^{\circ}$				
Field 8	Bytes 17 to 19	Latitude	Signed 24 bits integer ; MSB = 90 degrees				
Field 9	Bytes 20 to 22	Longitude	Signed 24 bits integer ; MSB = 180 degrees (Last Longitude value received from GPS, If no longitude is received for more than 3 seconds, the field will be reset to 0)				
Field 10	Bytes 23 to 24	North speed	Set to 0x00				
Field 11	Bytes 25 to 26	West speed	Set to 0x00				

Frame of 40 bytes sent 1 times out of 10

Message <f0><f1><f18></f18></f1></f0>							
Field 0	Byte 0	Message size	Fixed value = 40				
Field 1	Byte 1	Status 1*	See status specification table 1				
Field 2	Byte 2	Status 2**	See status specification table 2				
Field 3	Bytes 3 to 6 Hour		Set to 0x00				
Field 4	Byte 7 Ageing		Fixed value = 4 ms				
Field 5	Bytes 8 to 10 Heading		Unsigned 24 bits integer $2^{23} = 180^{\circ}$				
Field 6	Bytes 11 to 13	Roll	Signed 24 bits integer +/-2 ²³ = +/-90° (Positive when port side down) Warning: Opposite sign of PHINS usual convention.				
Field 7	Bytes 14 to 16	Pitch	Signed 24 bits integer $+/-2^{23} = +/-90^{\circ}$				
Field 8	Bytes 17 to 19	Latitude	Signed 24 bits integer ; MSB = 90 degrees				
Field 9	Bytes 20 to 22	Longitude	Signed 24 bits integer ; MSB = 180 degrees				
Field 10	Bytes 23 to 24	North speed	Set to 0x00				
Field 11	Bytes 25 to 26	West speed	Set to 0x00				
Field 12	Bytes 27 to 28	Date	Fixed value = 0				
Field 13	Bytes 29 to 30	Heave	Signed 16 bits integer +/-2 ¹⁵ = +/-360m (Positive when PHINS goes down) <u>Warning:</u> Opposite sign of OCTANS usual convention.				
Field 14	Bytes 31 to 32	Speed norm	Signed 16 bits integer $\pm -2^{15} = \pm -120$ knots				
Field 15	Bytes 33 to 34 Vertical speed		Set to 0x00				
Field 16	Byte 35	Latitude std. deviation	Set to 0x00				
Field 17	Byte 36	Longitude std. deviation	Set to 0x00				
Field 18	Bytes 37 to 38	Heading std. deviation	Set to 0x00				
Field 19	Byte 39 Error position		Set to 0x00				

* Status specification table 1

Function	Bit	Value	Links with OCTANS status words	
HRP validity	0	0 valid data 1 invalid data	OR of bits 30 of the OCTANS Sensor status 2: Failure mode bits 22, 23, 24 of the OCTANS Algorithm status 1: HRP_ERR	
Sensor anomaly	1	0 sensor OK 1 sensor anomaly	OR of bits 0 to 6 of the OCTANS Sensor status 2: ACC, FOG, SRC ERR	
Alignment	2	0 operational 1 alignment	Bit 1 of the OCTANS Algorithm status 1	
Reserved	3	= 0	Reserved field	
Reserved	4	= 1	Set to '1'	
Reserved	5	= 0	Reserved field	
Reserved	6	= 0	Reserved field	
Reserved	7	= 0	Reserved field	

** Status specification table 2

Function	Bit	Value	Links with OCTANS status words
Heading, attitude validity	0	0 if Heading, roll and pitch valid 1 if Heading, roll or pitch not valid	OR of bits 30 of the OCTANS Sensor status 2: Failure mode bits 22, 23, 24 of the OCTANS Algorithm status 1: HRP_ERR
FOGs validity	1	0 if FOG X, Y and Z valid 1 if FOG X, Y or Z not valid	OR of bits 0 to 2 of the OCTANS Sensor status 2: FOG ERR
Accelerometers validity	2	0 if ACC X, Y and Z valid 1 if ACC X ,Y or Z not valid	OR of bits 4 to 6 of the OCTANS Sensor status 2: ACC ERR
Optical source and FOG transmission validities	3	0 if Optical source and FOG transmission valid 1 if Optical source or FOG transmission not valid	Bit 3 of OCTANS Sensor status 2
Validity of the serial inputs	4	0 if all the serial inputs valid 1 if one or more serial inputs not valid	OR of bits 1 to 5 of the OCTANS System status 1
Validity of the serial outputs	5	0 if all the serial outputs are valid 1 if one or more serial outputs not valid	OR of bits 16 to 21 of the OCTANS System status 1
Reserved	6	= 0	
Reserved	7	= 0	

DCN STD NAV 10

This protocol is not available for all products. Refer to the tables of the section 4.4.1 to know if this protocol is available for your product.

- Standard: DCN Nav protocol 10 ms network
 (Spec DCN n° 19187 LSM/NAV June 96)
- Data sent: Heading, Roll, Pitch, Heave
- Data frame:

The protocol contains 15 bytes in binary format with header.

Data	Length	Туре	Description
Header	2	Binary	Byte 0: 0x0F, synchronization Byte 1: 00010xxx (binary) Bit 2: Alignment mode if 1 Bit 1: Anomaly if 1 Bit 0: data valid if 0
Heading	3	Binary	MSB: 180 degrees
Roll	3	Two complement	MSB: 90 degrees
Pitch	3	Two complement	MSB: 90 degrees
Vertical speed	2	Two complement	Unused, set to 0
Heave	2	Two complement	MSB: 360 meters

DOLOG HRP

This protocol is not available for all products.

Refer to the tables of the section 4.4.1 to know if this protocol is available for your product.

- Standard: Binary frame
- Data sent: Status, Heading , Roll, Pitch, Heading Rate, Roll Rate, Pitch Rate
- Data frame:

The protocol contains **10 fields - 16 bytes**. MSB are sent first.

Message <f0><f1><f2><f9></f9></f2></f1></f0>			
Field 0	Byte 0	0x02	Start of sentence
Field 1	Byte 1	Status	Bit 7, 6, 3, 2 and 1 not used Bit 5 : Alarm bit = 1 if Sensor error Bit 4 : Alignment bit = 1 for Alignment Bit 0 : Data valid bit = 1 for data valid
Field 2	Bytes 2 to 3	Heading	Unsigned 16 bits integer 2 ¹⁵ = 180° 0 to 359.99°
Field 3	Bytes 4 to 5	Roll	Signed 16 bits integer +/-2 ¹⁵ = +/-90° -90° to 89.99° (Positive when port side up)
Field 4	Bytes 6 to 7	Pitch	Signed 16 bits integer +/-2 ¹⁵ = +/-90° -90° to 89.99° (Positive when bow up) <u>Warning:</u> Opposite sign of the OCTANS usual convention
Field 5	Bytes 8 to 9	Heading rate*	Signed 16 bits integer +/-215 = +/-45°/s -45 to 44.99°/s (Positive when the OCTANS heading angle decreases) Warning: Opposite sign of the OCTANS usual convention
Field 6	Bytes 10 to 11	Roll rate*	Signed 16 bits integer +/-215 = +/-45°/s -45 to 44.99°/s (Positive when the OCTANS roll angle increases)
Field 7	Bytes 12 to 13	Pitch rate*	Signed 16 bits integer +/-215 = +/-45°/s -45 to 44.99°/s (Positive when the OCTANS pitch angle decreases) Warning: Opposite sign of the OCTANS usual convention
Field 8	Byte 14	Checksum	Negative sum of all the bytes before checksum byte (ignoring overflow)
Field 9	Byte 15	0x03	End of sentence

* The precision of the rotation rate data is limited to 3.6 deg/h to comply with the export regulation.

GYROCOMPAS 1

This protocol is not available for all products. Refer to the tables of the section 4.4.1 to know if this protocol is available for your product.

- Standard: Output NMEA 0183 compatible
- Data sent: Heading, Roll, Pitch, Status, Date and time (1)
- Data frame: it is composed of
 - □ NMEA **\$HEHDT** Frame see section 3.2.2.6
 - □ NMEA **\$PHTRO** Frame see section 3.2.1.14
 - □ NMEA **\$PHINF** Frame see section 3.2.1.8
- (1) And, If ZDA option selected:
 - NMEA **\$PHZDA** Frame see section 3.2.1.5

GYROCOMPAS 2

This protocol is not available for all products. Refer to the tables of the section 4.4.1 to know if this protocol is available for your product.

see section 3.2.1.8

- Standard: Output NMEA 0183 compatible
- Data sent: Heading, Roll, Pitch, Heave, Status, Date and time (1)
- Data frame: It is composed of
 - NMEA **\$HEHDT** Frame see section 3.2.2.6
 - NMEA **\$PHTRH** Standard Frame see section 3.2.1.13
 - NMEA **\$PHINF** Frame
- (1) And, If ZDA option selected:
 - NMEA **\$PHZDA** Frame see section 3.2.1.5

HAM CUSTOM

This protocol is not available for all products.

Refer to the tables of the section 4.4.1 to know if this protocol is available for your product.

- Standard: Output TSS proprietary protocol and Output NMEA 0183 frame
- Data sent: Roll, Pitch, Heave, Linear accelerations, Status, Heading
- Data frame:

The frame contains

- □ The TSS335B frame (please see "TSS335B" protocol)
- □ The NMEA HEHDT frame (please see "HEHDT" protocol)

Note

The checksum in the NMEA HEHDT frame sent is not calculated.

HDMS THOMSON

This protocol is not available for all products. Refer to the tables of the section 4.4.1 to know if this protocol is available for your product.

- Standard: Output HDMS system
- Data sent: Heading, Roll, Pitch, Heave
- Data frame:

The frame contains 10 bytes in binary format.

Message	00 90 RRRR	PPPP hhhh HHHH		
Byte 0	0x00	Sync byte		
Byte 1	0x90	Sync byte		
Byte 2	0xRRRR	Roll LSB	Roll ± 180°	
Byte 3		Roll MSB	LSB: 0.01°	
			Sign "+" when port up	
Byte 4	0xPPPP	Pitch LSB	Pitch ± 180°	
Byte 5		Pitch MSB	LSB: 0.01°	
			Warning: Opposite sign of Octans convention	
			Sign "+" when bow up	
Byte 6	0xhhhh	Heave LSB	Heave \pm 10 m	
Byte 7		Heave MSB	LSB: 0.01m	
			Sign "+" when Octans goes up	
Byte 8	0xHHHH	Heading LSB	Heading 0° to 360°	
Byte 9		Heading MSB	LSB: 0.01°	

Each data is "two complemented" coded except for Heading.

HEAVE POSTPRO

This protocol is not available for all products. Refer to the tables of the section 4.4.1 to know if this protocol is available for your product.

- Standard: NMEA 0183
- Data sent: Heave
- Data frame:

Conventions about time

The clock gives time starting when system is turned on. Time is reset to 0 every 24 hour. Early block versions used IEEE 32 floats to store time, which lacks accuracy when hours increase. Thus this floating point representation was replaced by a fixed point datation of 100us granularity in new bloc versions.

Conventions about data types

Each telegram description uses following convention:

Type name	Description
Byte	Unsigned 8 bit integer
Character	Signed 8 bit integer
Word	Unsigned 16 bit integer
Short	Signed 16 bit integer
DWord	Unsigned 32 bit integer
Long	Signed 32 bit integer
Float	IEEE Float 32 bits
Double	IEEE Float 64 bits

All 16 and 32 bits integers are represented in Big endian convention (MSB sent first)

Conventions about encryption

Only the the data fields of the ACC are enciphered. A new encrypting key is sent every 6000 frame that enables the decoding of the 6000 previous frames (hence every 60 second at 100 Hz).

Every 32 bits field is encoded as follow: Byte1 XOR KeyH, Byte2 XOR KeyL, Byte3 XOR KeyH and Byte4 XOR KeyL.

Heave Telegram description (version 0x01)

Data	Format	Units
Header	Byte	Value : '\$'
Telegram size	Byte	NN bytes
Telegram identification	Byte	30
Data bloc version	Byte	0x10
Data validity time	Dword	PHINS time tag in steps of 100us
Telegram counter	Word	N/A
Decoding key	Word	KeyH then KeyL
ACC X on COG	Float	meters/second ² in terrestrial frame (enciphered)
ACC Y on COG	Float	meters/second ² in terrestrial frame (enciphered)
ACC Z on COG	Float	meters/second ² in terrestrial frame (enciphered)
Real Time Surge	Float	meters (INS level)
Real Time Sway	Float	meters (INS level)
Real Time Heave	Float	meters (INS level)
Smart Heave Delay	Dword	in steps of 100us
Smart Heave	Float	Delayed heave in meters (INS level)
Heave Status	Byte	0x01 if Heave Ok
Real Time Heave Mode	Byte	Real Time Heave Filter mode: 1-Slight, 2-Moderate, 3- Rough, 4-Automatic
Heave Period	Float	Estimated Heave Period
Heave Amplitude	Float	Estimated Heave Amplitude

HEHDT

This protocol is not available for all products. Refer to the tables of the section 4.4.1 to know if this protocol is available for your product.

- Standard: Output NMEA 0183
- Data sent: Heading, Date and time (1)
- Data frame: It is composed of
 - □ NMEA **\$HEHDT** Frame see section 3.2.2.6

(1) And, If ZDA option selected:

□ NMEA **\$PHZDA** Frame see section 3.2.1.5

HEHDT FIXED

This protocol is not available for all products. Refer to the tables of the section 4.4.1 to know if this protocol is available for your product.

- Standard: This output is not NMEA 0183 compatible (there is no NMEA checksum in this data frame).
- Data sent: Heading, Date and time (1)
- Data frame:

\$HEHDT,xxx.x,T <cr><lf></lf></cr>			
where:	xxx.x	is the true heading in degrees	3 digits before and 1 digit after the decimal point
	т	is a fixed character = 'T'	

\$ZDA,	\$ZDA,hhmmss.ss,dd,mm,yyyy,hh,mm*hh <cr><lf> (1)</lf></cr>		
	hhmmss.ss	is UTC time	System Time or UTC Time if time
where:			synchronized
	dd	is the UTC day	
	mm	is the UTC month	
	уууу	is the UTC year	
	hh	is the local zone hours	
	mm	is the local zone minutes	
	hh	is the checksum	

(1) If ZDA option selected.

HEHDT HEROT

This protocol is not available for all products. Refer to the tables of the section 4.4.1 to know if this protocol is available for your product.

- Standard: Output NMEA 0183
- Data sent: Heading Rate, Date and time (1)
- Data frame: It is composed of
 - □ NMEA **\$HEHDT** Frame see section 3.2.2.6
 - □ NMEA **\$HEROT** Frame see section 3.2.2.7
- (1) And, If ZDA option selected:
 - NMEA **\$PHZDA** Frame see section 3.2.1.5

HETHS HEROT

This protocol is not available for all products. Refer to the tables of the section 4.4.1 to know if this protocol is available for your product.

- Standard: Output NMEA 0183
- Data sent: Heading, Heading Rate, Validity status
- Data frame: It is composed of
 - □ NMEA **\$HETHS** Frame see section 3.2.2.8
 - □ NMEA **\$HEROT** Frame see section 3.2.2.7

And, If ZDA option selected:

□ NMEA **\$PHZDA** Frame see section 3.2.1.5

IFREMER VICTOR V3

This protocol is not available for all products. Refer to the tables of the section 4.4.1 to know if this protocol is available for your product.

- Standard: Output Ifremer proprietary protocol compatible with Seatex MRU6 system
- Data sent: Heading, Roll, Pitch, Heave, Rotation rates, Accelerations
- Data frame: The frame contains a header, 10 fields with 4 bytes in binary format per field and a checksum. Data are coded in IEEE floating point standard. MSB are sent first and LSB in last position.

Message	<q><n><id><f1><</f1></id></n></q>	F2> <f8><f9><s></s></f9></f8>	
Byte 0	'Q'	Sync	
Byte 1	0x29	Number of bytes: Fields and user id. $(4*10 + 1 = 41)$	
Byte 2	0x0C	User id. Octans id is fixed to 12	
Field 1 Bytes 3 to 6	Roll	radians IEEE floating point format	
Field 2 Bytes 7 to 10	Pitch	radians IEEE floating point format	
Field 3 Bytes 11 to 14	Heading	radians IEEE floating point format	
Field 4 Bytes 15 to 18	XV2 Rot rate	radians per second IEEE floating point format (pitch speed)	
Field 5 Bytes 19 to 22	XV3 Rot rate	radians per second IEEE floating point format (opposite heading speed)	
Field 6 Bytes 23 to 26	XV1 Rot rate	radians per second IEEE floating point format (roll speed)	
Field 7 Bytes 27 to 30	XV2 acceleration	m/s2 IEEE floating point format	
Field 8 Bytes 31 to 34	XV3 acceleration	m/s2 IEEE floating point format	
Field 9 Bytes 35 to 38	XV1 acceleration	m/s2 IEEE floating point format	
Field 10 Bytes 39 to 42	Heave	IEEE floating point format	
Byte 43	Checksum	Addition of all the bytes for 0 to 42 discarding overflow	

IG03

This protocol is not available for all products.

Refer to the tables of the section 4.4.1 to know if this protocol is available for your product.

- Standard: Output IG03
- Data sent: Heading, Roll, Pitch , Position
- Data frame: ASCII Format

If ZDA tick box is checked a \$PHZDA telegram is added to the protocol output messages, see section 3.2.1.5.

Short Format:

\$HHH.H,N,XX <cr><lf></lf></cr>			
where:	ннн.н	Heading in degree	
	N	'N' fix character	
	хх	2 digits hexadecimal Status	See Status Table Below

Long Format:

\$HHH.H,N	\$HHH.H,N,XX,aLL.L,SS,aRR.R,aPP.P <cr><lf></lf></cr>			
where:	ННН.Н	Heading in degree		
	Ν	'N' fix character		
	ХХ	Status	See Status Table below	
	aLL.L	aLL.L is the latitude in degrees		
		a ='+' for Northern hemisphere		
		a='-' for Southern hemisphere		
	SS	is the speed in knots		
	aRR.R	aRR.R is the roll angle in degrees	Opposite of OCTANS	
		a='+' for port up	convention	
		a='-' for port down.		
	aPP.P	aPP.P is the pitch angle in degrees		
		a='-' for bow up		
		a='+' for bow down		

The table below details status byte bit definition according to OCTANS User status bit description (see Table 9):

Status byte bit index	Description	Corresponding User status bits
0 to 4	N/A	
5	'1' = Heading not valid	User Status bit 15: SENSOR_ERR: User or User
	ʻ0' = Heading Valid	Status bit 5: ALIGNMENT
6	N/A	
7	'1' = Alignment	User Status bit 5: ALIGNMENT
	'0' = Navigation	

IMU_BINARY

This protocol is not available for all products. Refer to the tables of the section 4.4.1 to know if this protocol is available for your product.

Standard:Binary protocolData sent:Rotation rates, Linear Accelerations, Sensor Status and TemperatureData frame:The frame contains 10 fields - 37 bytes. MSB are sent first.

These data are only accessible for IMU90 product.

Message <f0><f1><f2><f10></f10></f2></f1></f0>			
Field 0	Byte 0	'\$'	Synchronization byte
Field 1	Byte 1 to 4	Time stamp (0-24)	Unsigned 32 bit integer. LSB= 50 μs
Field 2	Byte 5 to 8	XV1 delta rotation	IEEE float 32 bits in radian Note 1
Field 3	Byte 9 to 12	XV2 delta rotation	IEEE float 32 bits in radian
Field 4	Byte 13 to 16	XV3 delta rotation	IEEE float 32 bits in radian
Field 5	Byte 17 to 20	XV1 delta velocity	IEEE float 32 bits in m/s Note 1
Field 6	Byte 21 to 24	XV2 delta velocity	IEEE float 32 bits in m/s
Field 7	Byte 25 to 28	XV3 delta velocity	IEEE float 32 bits in m/s
Field 8	Byte 29 to 32	Sensor status	Unsigned 32 bit integer. sensor status 2
Field 9	Byte 33 to 34	Sensor temperature	Signed 16 bit integer. x10 Kelvin Note 2
Field 10	Byte 35 to 36	Checksum	Unsigned 16 bit integer Note 3

Note 1 : Delta rotation is the integration of the gyro readings in the time interval of output data rate. We define t1 as the time validity of the delta rotation data, Δt the output data rate and t2 the instant of output of first bit of data telegram. Then (t2-t1) is the latency on data and delta rotation is the integration of rotation angle from t1- Δt to t1.

Delta velocity is the integration of accelerometer readings in the time interval of output data rate in the same manner as delta rotation.

Note 2: to convert value to °C= (Temperature/10)-273.15. This is the mean value of TFOGX1, TFOGX2, TFOGX3, TACCX1, TACCX2, TACCX3.

Note 3 : Sum of all bytes from byte 0 to byte 34.

IMU RAWDATA

This protocol is not available for all products. Refer to the tables of the section 4.4.1 to know if this protocol is available for your product.

Standard: ASCII protocol

Data sent:Rotation rates, Linear Accelerations, Sensor Status and TemperatureData frame:The frame contains 12 fields - 32 bytes.

These data are only accessible for IMU90 product.

Message <f0><f1><f2><f11></f11></f2></f1></f0>				
Field 0	Byte 0	0x55	Synchronization byte	
Field 1	Byte 1	0255	Counter Note 1	
Field 2	Byte 2 to 3	See below	Status Note 2	
Field 3	Byte 4 to 7	XV1 delta rotation	IEEE Float 32 bits in radian Note 5	
Field 4	Byte 8 to 11	XV2 delta rotation	IEEE Float 32 bits in radian	
Field 5	Byte 12 to 15	XV3 delta rotation	IEEE Float 32 bits in radian	
Field 6	Byte 16 to 19	XV1 delta velocity	IEEE Float 32 bits in m/s	
Field 7	Byte 20 to 23	XV2 delta velocity	IEEE Float 32 bits in m/s Note 5	
Field 8	Byte 24 to 27	XV3 delta velocity	IEEE Float 32 bits in m/s	
Field 9	Byte 28	Temperature	Signed 8 bit integer in °C Note 4	
Field 10	Byte 29 to 30	See below	Checksum Note 3	
Field 11	Byte 31	0xAA	Stop byte	

Note 1: The counter starts from 0 and is incremented by 1 for each message transmitted. Counter wraps back to 0 when it reaches the maximum value of 255. The counter is used to detect lost messages at receiver.

Note 2: The status is described hereafter:

Bit 0	FOG X1 anomaly (bit 0 of sensor status 2)
Bit 1	FOG X2 anomaly (bit 1 of sensor status 2)
Bit 2	FOG X3 anomaly (bit 2 of sensor status 2)
Bit 3	FOG Acquisition error (OR of bit 19 to 24 of Sensor status 1)
Bit 4	Accelerometer X1 anomaly (bit 4 of sensor status 2)
Bit 5	Accelerometer X2 anomaly (bit 5 of sensor status 2)
Bit 6	Accelerometer X3 anomaly (bit 6 of sensor status 2)
Bit 7	Sensor error (OR of bit 0 to 6 of present status)
Bit 8	Optical source error (bit 3 of sensor status 2)
Bit 9	Temperature error (bit 7 of sensor status 2)
Bit 12-15	Reserved

Note 3

The CRC is defined as follows and is computed based on data fields 0 to 9.

Name:	"CRC-16/CCITT"
Width:	16
Poly:	0x1021, (or X16+X12+X5+1)
Init:	FFFF
Reflected input:	True
Reflected output:	True

Note 4

Temperature is coded in 2's complement signed integer format, ranging from -128°C to +127°C.

The temperature represents the mean temperature of T_{FOGX1} , T_{FOGX2} , T_{FOGX3} , T_{ACCX1} , T_{ACCX2} , T_{ACCX3} .

Note 5

Delta rotation is the integration of the gyro readings in the time interval of output data rate. We define t1 as the time validity of the delta rotation data, Δt the output data rate and t2 the instant of output of first bit of data telegram. Then (t2-t1) is the latency on data and delta rotation is the integration of rotation angle from t1- Δt to t1.

Delta velocity is the integration of accelerometer readings in the time interval of output data rate in the same manner as delta rotation.

IXBLUE STANDARD BIN V2, V3

This protocol is not available for all products. Refer to the tables of the section 4.4.1 to know if this protocol is available for your product.

Important

The value of the heave without lever arm is set to 0 when selecting Smart heave in the web-based user interface with this protocol for the output settings.

Conventions

Validity time fields

Output mode

If the protocol is used as output, the validity time fields contain internal system time that can be synchronized with GPS UTC time when UTC time is sent to system at regular intervals (i.e: every second). To improve accuracy it is recommended to input a 1 PPS pulse at pulse input of system. If no UTC is received, the internal time starts at 0 at system boot time. The time fields are formatted in steps of 100 μ s and cycle from 0 to 24h, thus covering [0:863999999] steps of 100 μ s.

Input mode

If the protocol is used as input, the validity time field is used to provide external sensor validity time, formatted in steps of 100 µs. Three cases can be distinguished:

- Time stamp shall be positive or null to send timestamp ([0:863999999] steps of 100 µs). In this case, used timestamp corresponds to the transmitted timestamp.
- Time stamp shall be negative to indicate sensor delay. In this case, used timestamp correspond to reception time minus transmitted delay.
- Time stamp shall be 0x7FC0000 if no time information has to be sent. In this case, external sensor timestamp corresponds to reception timestamp
- Data types

Each telegram description uses following convention:

Type name	Description
Byte	Unsigned 8 bit integer
Character	Signed 8 bit integer
Word	Unsigned 16 bit integer
Short	Signed 16 bit integer
DWord	Unsigned 32 bit integer
Long	Signed 32 bit integer
Float	IEEE Float 32 bits
Double	IEEE Float 64 bits

All 16 and 32 bits integers are represented in Big Endian convention (MSB sent first)

Direction

Given that the protocol can used both as output or input, the following conventions is used to indicate if a data is used in output mode, input mode or both (mainly apply on bit masks):

Type name	Description
I	Filled/Used in input mode only
0	Filled/Used in output mode only
I/O	Filled/Used in both input and output mode

Frames

Different frames are used to express data:

- AHRS body frame (X1, X2, X3)
- Vehicle frame (XV1, XV2, XV3) that coincide with vessel frame after rough and fine misalignment are stored into the system using the web-based user interface.
- Sensor (i.e: EM LOG) reference frame (XS1, XS2, XS3).
- Local geographical frame (XNorth, XWest ,XUp)
- Horizontal vehicle frame (XV1H, XV2H, XV3H) is vehicle frame compensated from roll an pitch. It lies in geographical horizontal plane.

Figure 8: Vehicle, Body and sensor reference frame

Altitude convention

Altitude can referenced to Geoïdal model (mean sea level) if managed by the GPS input. In this case, geoïdal separation field is a valid IEEE float that contains distance between geoid and ellipsoid at current position. Otherwise if GPS does not manage mean sea level altitude, the altitude field if referenced from ellipsoid and geoidal separation field contains NaN value 0x7FC00000.

Protocol description

The iXBlue StdBin protocol can be used both as output or input protocol.

The output telegram is used to get navigation data and received external sensors from the system. The input telegram is used to send external sensors data to the system.

Protocol structure

The structure of the protocol is the same whether it's used as input or output. Each protocol frame contains a header message, followed the message body that can contain a combination a different data blocks.

When used as output, the message body contains both navigation data blocks and external sensors data blocks (external sensors received by the system). When used as input, the message body only contains external sensors data blocks (to send to the system).

Additional command frames can be sent to the system, using specific command header, to send parameters to the product. The system will reply to these command frames with answer frames starting with answer header as detailed in next chapters.

Each message is terminated by a checksum to validate all the content of the telegram. This checksum is a DWord unsigned sum of all frame bytes, including the header and excluding the checksum itself.

Header	Body	Checksum

Protocol Use

As described in the following paragraphs, the protocol header is slightly different in input and output modes. However, the input mode manages both the input telegram coded as specified hereafter (including input header format) and the output telegram coming from another INS/AHRS (including output header format). This enables to loopback one system to another using iXBlue Std Bin protocol.

Message Headers

There are four types of headers in this protocol:

- Command header, used to send commands to the system
- · Answer header, used to contain responses to a command sent to the system
- Output navigation data header, used to contains system navigation data and external sensor copies
- Input sensor data header, used to send external sensors to the system

The headers hold the protocol version, and for navigation messages, the bit masks that indicate which data block is present, the telegram size and other information depending on protocol direction.

Input message header for commands

Input messages that contain commands to be sent to the system are formatted using following header (available from version 3 only):

Data	Format	Units
Header 1	Byte	Value : 'C'
Header 2	Byte	Value : 'M'
Protocol version	Byte	0x03
Total telegram size	Word	Number of bytes of the message including 7 byte header

The body part of each command message contains a single command formatted as detailed in Advanced Configuration document. They are used to send parameters to the system.

Output message header for answers to commands

Output messages that contain answers to commands that were sent to the system are formatted using following header (available from version 3 only):

Data	Format	Units
Header 1	Byte	Value : 'A'
Header 2	Byte	Value : 'N'
Protocol version	Byte	0x03
Total telegram size	Word	Number of bytes of the message including 7 byte header

Output message header for navigation data

Version 0x2 header

Data	Format	Units
Header 1	Byte	Value : 'l'
Header 2	Byte	Value : 'X'
Protocol version	Byte	0x02
Navigation data blocks bit mask	DWord	Bloc combination identification bit mask
		Bit is set to 1 when bloc is output, 0 otherwise.
External data bit mask	DWord	Bloc combination identification bit mask
		Bit is set to 1 when bloc is output, 0 otherwise.
Total telegram size	Word	Number of bytes of the message including 21 byte header
Navigation data validity time	Dword	Validity time in steps of 100us (refer to § Validity time fields)
Counter	DWord	Cycling counter inside [0:2 ³² -1]

Version 0x3 header

Navigation data output telegram header version 3 is formatted as follows:

Data	Format	Units
Header 1	Byte	Value : 'l'
Header 2	Byte	Value : 'X'
Protocol version	Byte	0x03
Navigation data blocks bit mask	DWord	Bloc combination identification bit mask
		Bit is set to 1 when bloc is output, 0 otherwise.
Extended Navigation data block bit	DWord	Bloc combination identification bit mask
mask		Bit is set to 1 when bloc is output, 0 otherwise.
External data bit mask	DWord	Bloc combination identification bit mask
		Bit is set to 1 when bloc is output, 0 otherwise.
Total telegram size	Word	Number of bytes of the message including 25 byte
		header
Navigation data validity time	Dword	Validity time in steps of 100 us (refer to § Validity time
		fields)
Counter	DWord	Cycling counter inside [0:2 ³² -1]

Navigation data input message header

Navigation data input messages are used to send external sensor data to the system using the same structure as output messages.

Version 0x2 header

On protocol version 2, navigation data messages are formatted using following header:

Data	Format	Units
Header 1	Byte	Value : 'l'
Header 2	Byte	Value : 'X'
Protocol version	Byte	0x02
Navigation data blocks bit mask	DWord	Unused in input mode.
		Shall be set to 0x0000000
External data bit mask	DWord	Bloc combination identification bit mask
		Bit is set to 1 when bloc is output, 0 otherwise.
Total telegram size	Word	Number of bytes of the message including 21 byte header
External sensors	Byte	External sensors timestamp :
time stamp reference		0x00: UTC time
RFU	7 Bytes	Shall be set to 0x00.

Version 0x3 header

On protocol version 3, navigation data messages are formatted using following header:

Data	Format	Units
Header 1	Byte	Value : 'l'
Header 2	Byte	Value : 'X'
Protocol version	Byte	0x03
Navigation data blocks bit	DWord	Unused in input mode.
mask		Shall be set to 0x00000000
Extended navigation data	DWord	Unused in input mode.
blocks bit mask		Shall be set to 0x00000000
External data bit mask	DWord	Bloc combination identification bit mask
		Bit is set to 1 when bloc is output, 0 otherwise.
Total telegram size	Word	Number of bytes of the message including 25 byte header
External sensors	Byte	External sensors timestamp :
time stamp reference		0x00: UTC time
RFU	7 Bytes	Shall be set to 0x00.

Bit Masks description for navigation data messages

Navigation data blocks

Following table describes the navigation data blocks and their corresponding bit number:

Bit n°	Internal Block description	Dir.
0	Attitude & Heading	0
2	Real time Heave/Surge/Sway	0
3	Smart Heave™	0
4	Heading/Roll/Pitch Rate	0
5	Rotation rate in vessel frame, compensated from Earth rotation	0
6	Acceleration in vessel frame, compensated from gravity	0
9	Speed in geographic frame	0
13	System date	0
14	INS/AHRS sensor status	0
18	AHRS algorithm status	0
19	AHRS system status	0
20	AHRS user status	0
21	Heave, surge and sway speeds	0
22	Speed in vessel frame	0

Bit n°	Internal Block description	Dir.
23	Acceleration in geographic frame not compensated from gravity	0
24	Course and speed over ground	0
25	Temperatures (ACC/FOG/ANA)	0
26	Attitude quaternion data	0
28	Raw accelerations in vessel frame	0
	not compensated from gravity	

Extended navigation data blocks

Following table describes the extended navigation data blocks and their corresponding bit number. This section is only available from protocol version 3:

Bit n°	Internal Block description	Dir.
0	Rotation accelerations in vessel frame	0
2	Raw rotation rate in vessel frame, not compensated from Earth rotation	0

External sensor data blocks

Following table details the external sensor and status blocks and their corresponding bit number:

Bit n°	Block description	Dir.
0	UTC data	I/O
1, 2, 3	GPS1, GPS2, manual GPS data	I/O
4, 5	EMLOG1, EMLOG 2 data	I/O

Navigation data blocks

The navigation data blocks are used in output mode only.

Attitude & Heading data block (bit n°0)

Attitude and Heading relates to Vehicle reference frame.

Data	Format	Units
Heading	Float	In degrees, inside [0°:360°[
Roll	Float	In degrees, positive when port up, inside [-180°:180°[
Pitch	Float	In degrees, positive bow down, inside [-90°:90°]

Heave/Surge/Sway data block (bit n°2)

Data	Format	Units
Real time heave	Float	In meters, positive up (X)/3H direction)
without lever arm ^(*)	ΓΙΟαι	
Real time heave	Float	In meters, positive up (XV/3H direction)
at selected lever arm	Fillat	
Real time surge	Float	In meters, positive forward in XV1H
at selected lever arm		
Real time sway	Float	In meters, positive port side in XV2H
at selected lever arm	Ποαι	

(*) if the user specified the COG lever arm, this field corresponds to COG heave. Otherwise, if COG lever arm is not specified, this is the heave at the system position (i.e. center of body frame).

Smart Heave[™] data block (bit n°3)

This block contains Smart Heave[™] data and related time.

Data	Format	Units
Smart Heave Time(*)	Dword	Smart heave validity time (steps of 100us, refer to § Validity time field)
Smart Heave [™] At primary lever arm ^(**)	Float	In meters, positive up (XV3H direction)

^(*) The smart heave is delayed by 100s. This field contains the time of validity for the Smart Heave.

(**) The smart heave is only available on primary lever arm.

Heading/Roll/Pitch rate data block (bit n°4)

This block contains attitude rates data (derivative of heading, roll and pitch):

Data	Format	Units
Heading rotation rate	Float	In °/s, positive when heading increases
Roll rotation rate	Float	In °/s, positive when port going up
Pitch rotation rate	Float	In °/s, positive when bow going down

Body rotation rates data block in vessel frame (bit n°5)

This block contains rotation rates in vessel frame XV1, XV2, XV3, compensated from earth rotation, gyros biases and scale factors:

Data	Format	Units
Rotation rate XV1	Float	In °/s, positive when port is going up
Rotation rate XV2	Float	In °/s, positive when bow is going down
Rotation rate XV3	Float	In °/s, positive counter clock wise around XV3

Accelerations data block in vessel frame (bit n°6)

This block contains accelerations **at primary lever arm** in vessel frame XV1, XV2, XV3, compensated from gravity:

Data	Format	Units
Acceleration XV1	Float	In m/s ² , positive forward
Acceleration XV2	Float	In m/s ² , positive toward port
Acceleration XV3	Float	In m/s ² , positive up

Linear acceleration expressed in vessel frame, noted:

$$\underline{a}_{v} = \frac{d}{dt} (\underline{v}_{v})$$

It is computed by compensating gravity and Coriolis acceleration from raw measured accelerations as body frame is not Galilean.

Speed data block in geographic frame (bit n°9)

This block contains speed data at primary lever arm in geographical frame:

Data	Format	Units
North velocity	Float	In m/s, positive north
East velocity	Float	In m/s, positive east
Up velocity	Float	In m/s, positive up

System date data block (bit n°13)

This is AHRS internal date if system is not date synchronized to GPS otherwise it is ZDA date.

Data	Format	Units
Day	Byte	Day inside [0:31], 0 if unavailable
Month	Byte	Month inside [0:12], 0 if unavailable
Year	Word	Year inside [0:65535], 0 if unavailable

AHRS Sensor Status (bit n°14)

This block contains sensor statuses are detailed in 2.2:

Data	Format	Units
Sensor Status 1	DWord	N/A
Sensor Status 2	DWord	N/A

AHRS Algorithm Status (bit n°18)

This block contains AHRS algorithm status are detailed in 2.2:

Data	Format	Units
Algorithm Status	DWord	N/A

AHRS System Status (bit n°19)

This block contains AHRS system status are detailed in 2.2:

Data	Format	Units
System Status 1	DWord	N/A
System Status 2	DWord	N/A
System Status 3	DWord	N/A

AHRS User Status (bit n°20)

This block contains AHRS user status are detailed in 2.2:

Data	Format	Units
User Status	DWord	N/A

Heave/Surge/Sway speed data block (bit n°21)

Data	Format	Units
Real time heave speed	Float	In m/c, positivo up in XV/2H direction
(at selected lever arm)		
Surge speed	Float	In m/a positive ferward in XV/4H
(at selected lever arm)		
Sway speed	Float	In m/s, positive port side in XV2H
(at selected lever arm)		

Speed data block in vessel frame (bit n°22)

This block contains speed data at primary lever arm in vessel frame:

Data	Format	Units
XV1 velocity	Float	In m/s, positive along XV1
XV2 velocity	Float	In m/s, positive along XV2
XV3 velocity	Float	In m/s, positive along XV3

Acceleration data block in geographic frame (bit n°23)

This block contains accelerations **at primary lever arm** in geographical frame, not compensated from gravity:

Data	Format	Units
North acceleration	Float	In m/s ² , positive North
East acceleration	Float	In m/s², positive East
Vertical acceleration	Float	In m/s ² , positive up

Temperatures (bit n°25)

This block contains the average temperature data:

Data	Format	Units
Mean temperature FOG:	Float	In °Celsius
Average(TEMP_FOG_X,		
TEMP_FOG_Y, TEMP_FOG_Z)		
Mean temperature ACC:	Float	In °Celsius
Average(TEMP_ACC_X,		
TEMP_ACC_Y, TEMP_ACC_Z)		
Temperature [TEMP_ANA]	Float	In °Celsius
(Sensor board temperature)		

Attitude quaternion (bit n°26)

This block contains the attitude quaternion representation:

Data	Format	Units
Attitude quaternion component q0	Float	N/A
Attitude quaternion component q1	Float	N/A
Attitude quaternion component q2	Float	N/A
Attitude quaternion component q3	Float	N/A

See § Quaternions for details on quaternions definitions, operations and relationship with Euler angles.

Raw acceleration in vessel frame (bit 28)

This block contains the acceleration in vessel frame, at primary lever arm, not compensated from gravity:

Data	Format	Units
Acceleration XV1	Float	In m/s ² , positive forward
Acceleration XV2	Float	In m/s ² , positive toward port
Acceleration XV3	Float	In m/s ² , positive up

Extended navigation data blocks

Rotation accelerations in vessel frame (bit 0)

This block contains the rotation accelerations (derivate of compensated rotation rates: see § Body rotation rates data block in vessel frame) in vessel frame:

Data	Format	Units
Raw rotation acceleration XV1	Float	In °/s²
Raw rotation acceleration XV2	Float	In °/s²
Raw rotation acceleration XV3	Float	In °/s²

Raw rotation rate in vessel frame (bit 2)

This block contains raw rotation rates in vessel frame, not compensated from Earth rotation:

Data	Format	Units
Raw rotation rate XV1	Float	In °/s
Raw rotation rate XV2	Float	In °/s
Raw rotation rate XV3	Float	In °/s

External sensors data blocks

The external sensors data blocks are used in both output and input mode.

- When used as output, the sensor blocks are sent only when the corresponding data is received by the system. The data validity time corresponds to the internal time or the UTC time if the system is UTC synchronized.
- When used as input, the sensor blocks are sent only to send external sensor data to the system. The time tag data corresponds to the sensor validity time. Refer to § Validity time fields for more details.

UTC data block (bit n°0)

Last UTC data block received or UTC data block to send:

Data	Format	Units	
Data validity time	Dword	Time tag in steps of 100us	
		(refer to § Validity time fields)	
UTC Source	Byte 0: UTC1, 1: UTC2		

GPS1, GPS2 and Manual GPS data blocks (bits n°1,2,3)

Last GPS1, GPS2 or Manual GPS data received or GPS data to send:

Data	Format	Units	
Data validity time	Long	Time tag in steps of 100us	
		(refer to § Validity time fields)	
GPS identification	Byte	0: GPS1	
		1: GPS2	
		2: Manual GPS	
GPS quality	Byte	Fixed to 1 for manual GPS	
Latitude	Double	In degrees, positive North, inside [-90° :90°]	
Longitude	Double	In degrees, positive East, inside [0° :360°[
Altitude	Float	In meters, positive up, in geoid reference	

Data	Format	Units	
Latitude standard deviation	Float	In meters	
Longitude standard deviation	Float	In meters	
Altitude standard deviation	Float	In meters	
Latitude/Longitude covariance	Float	In meters ²	
		Fixed to 0 for manual GPS	
Geoidal separation	Float	meters (See § Conventions)	

EMLOG1 and EMLOG2 data blocks (bits n°4,5)

Last EMLOG1 or EMLOG2 data received or EMLOG data to send:

Data	Format	Units	
Data validity time	Long	Time tag in steps of 100us	
		(refer to § Validity time fields)	
EMLOG ID	Byte	0: EMLOG1	
		1: EMLOG2	
XV1 longitudinal water speed	Float	In m/s, positive forward	
XV1 speed standard deviation	Float	In m/s	

Quaternions conventions

Quaternion definition and operations

General expression of a quaternion

If q is a real number and $\underline{V} = \begin{bmatrix} V_x \\ V_y \\ V_z \end{bmatrix}$ a vector of the three dimensional Euclidian space, then

the quaternion $Q = q + \underline{V}$ can be defined as:

$$Q = q + \underline{V} = \begin{bmatrix} q \\ V_x \\ V_y \\ V_z \end{bmatrix}$$

Where q and \underline{V} are respectively the scalar part and the vector part of the quaternion Q. Conjugate of a quaternion:

If $Q = \begin{bmatrix} q0 \\ q1 \\ q2 \\ q3 \end{bmatrix}$ is a quaternion, the conjugate \overline{Q} of Q is given by:

$$\bar{Q} = \begin{bmatrix} q0\\ -q1\\ -q2\\ -q3 \end{bmatrix}$$

Product of two quaternions

If $P = \begin{bmatrix} p_0 \\ p_1 \\ p_2 \\ p_3 \end{bmatrix}$ and $Q = \begin{bmatrix} q_0 \\ q_1 \\ q_2 \\ q_3 \end{bmatrix}$ are two quaternions, the product of P by Q, written *P*.*Q* is given

by:

$$P.Q = \begin{bmatrix} p0\\ p1\\ p2\\ p3 \end{bmatrix} \cdot \begin{bmatrix} q0\\ q1\\ q2\\ q3 \end{bmatrix} = \begin{bmatrix} p0q0 - p1q1 - p2q2 - p3q3\\ p0q1 + p1q0 + p2q3 - p3q2\\ p0q2 - p1q3 + p2q0 + p3q1\\ p0q3 + p1q2 - p2q1 + p3q0 \end{bmatrix}$$

Conjugation of a vector V by a quaternion Q

$$Q.\underline{V}.\overline{Q} = \begin{bmatrix} q0\\ q1\\ q2\\ q3 \end{bmatrix} \cdot \begin{bmatrix} q0\\ Vx\\ Vy\\ Vz \end{bmatrix} \cdot \begin{bmatrix} q0\\ -q1\\ -q2\\ -q3 \end{bmatrix}$$

$$= \begin{bmatrix} (q0^2 + q1^2 - q2^2 - q3^2)Vx + 2(q1q2 - q0q3)Vy + 2(q1q3 + q0q2)Vz\\ 2(q1q2 + q0q3)Vx + (q0^2 - q1^2 + q2^2 - q3^2)Vy + 2(q2q3 - q0q1)Vz\\ 2(q1q3 - q0q2)Vx + 2(q2q3 + q0q1)Vy + (q0^2 - q1^2 - q2^2 + q3^2)Vz \end{bmatrix}$$

Attitude quaternion definition

Definition

Quaternion Q_{Geob} represents the rotation required to get from geographical frame to body frame:

For a vector \underline{V} , V_b being its expression in body frame and V_{geo} its expression in geographical frame, the transformation from geographical frame to body frame is done through V_{aeo} conjugation by quaternion Q_{Geob} :

$$V_b = Q_{Geob} \cdot V_{geo} \cdot \overline{Q_{Geob}}$$

Here we note «.» the usual product in quaternion space and $\overline{Q_{Geob}}$ the conjugate of quaternion Q_{Geob} .

Relationship between attitude quaternion and Euler angles

H is heading angle, positive from North to East (indirect)

P is pitch angle, positive when bow gets down

R is roll angle, positive when port side gets up

[A'] and [A''] are intermediate frames where:

[A'] is the image of geographical frame by heading rotation (-H, XUP)

[A''] is the image of [A'] by pitch rotation (P, $Y_{A'}$)

[v] is the image of [A"] by roll rotation (R, XA")

To get from geographical frame to vessel frame, we successively apply: A heading rotation of -H degrees around X_{UP} , represented by quaternion:

$$Q_{A'Geo} = \left(\cos\left(\frac{H}{2}\right) - \sin\left(\frac{H}{2}\right)X_{UP}\right)$$

A pitch rotation P, around axis YA' represented by the quaternion

$$Q_{A''A'} = \left(\cos\left(\frac{P}{2}\right) + \sin\left(\frac{P}{2}\right)Y_{A'}\right)$$

Roll rotation R around axis $X_{A^{\prime\prime}}$ represented by quaternion :

$$Q_{\nu A \prime \prime} = \left(\cos\left(\frac{R}{2}\right) + \sin\left(\frac{R}{2}\right) X_{A \prime \prime} \right)$$

The global transition quaternion from geographical frame to vessel frame is thus the product:

$$Q_{Geov} = \left(\cos\left(\frac{R}{2}\right) - \sin\left(\frac{R}{2}\right)X_{A\prime\prime}\right) \cdot \left(\cos\left(\frac{P}{2}\right) - \sin\left(\frac{P}{2}\right)Y_{A\prime}\right) \cdot \left(\cos\left(\frac{H}{2}\right) + \sin\left(\frac{H}{2}\right)X_{UP}\right)$$

$$Q_{Geov} = \begin{bmatrix} \cos\left(\frac{R}{2}\right) \\ -\sin\left(\frac{R}{2}\right) \\ 0 \\ 0 \end{bmatrix} \cdot \begin{bmatrix} \cos\left(\frac{P}{2}\right) \\ 0 \\ -\sin\left(\frac{P}{2}\right) \\ 0 \end{bmatrix} \cdot \begin{bmatrix} \cos\left(\frac{H}{2}\right) \\ 0 \\ 0 \\ \sin\left(\frac{H}{2}\right) \end{bmatrix}$$

That can be developed as:

$$Q_{Geov} = \begin{bmatrix} \cos\left(\frac{R}{2}\right) \cdot \cos\left(\frac{P}{2}\right) \cos\left(\frac{H}{2}\right) - \sin\left(\frac{R}{2}\right) \cdot \sin\left(\frac{P}{2}\right) \cdot \sin\left(\frac{H}{2}\right) \\ -\sin\left(\frac{R}{2}\right) \cdot \cos\left(\frac{P}{2}\right) \cdot \cos\left(\frac{H}{2}\right) - \cos\left(\frac{R}{2}\right) \cdot \sin\left(\frac{P}{2}\right) \sin\left(\frac{H}{2}\right) \\ \sin\left(\frac{R}{2}\right) \cdot \cos\left(\frac{P}{2}\right) \cdot \sin\left(\frac{H}{2}\right) - \cos\left(\frac{R}{2}\right) \cdot \sin\left(\frac{P}{2}\right) \cdot \cos\left(\frac{H}{2}\right) \\ \cos\left(\frac{R}{2}\right) \cdot \cos\left(\frac{P}{2}\right) \cdot \sin\left(\frac{H}{2}\right) + \sin\left(\frac{R}{2}\right) \cdot \sin\left(\frac{P}{2}\right) \cdot \cos\left(\frac{H}{2}\right) \end{bmatrix}$$

Standard deviation of attitude quaternion

Definition

Or:

Attitude quaternion Q_{Geov} can be written as follows :

$$Q_{Geov} = Q_{bv} Q_{nb} Q_{Geon}$$

Introducing the error quaternions for Q_{nb} and Q_{Geon} , the above can be rewritten as follows :

$$Q_{Geov} = Q_{bv} \hat{Q}_{nb} \left(1 - \frac{\eta}{2} \right) \hat{Q}_{Geon} \left(1 - \frac{\gamma}{2} \right) (0.1)$$

Introducing the error quaternion for ${\it Q}_{{\it Geov}}$, we can write :

$$Q_{Geov} = \hat{Q}_{Geov} \left(1 - \frac{\xi}{2} \right)$$

$$Q_{Geov} = Q_{bv} \hat{Q}_{Geob} \left(1 - \frac{\underline{\xi}}{2} \right) (0.2)$$

with $\underline{\xi}$ defined as the (small) rotation vector to get from actual [Geo] frame to erroneous [Geo] frame.

Equating Eq. Erreur ! Source du renvoi introuvable. and Eq.(0.2) yields:

$$\hat{Q}_{Geob}\left(1-\frac{\xi}{2}\right) = \hat{Q}_{nb}\left(1-\frac{\eta}{2}\right)\hat{Q}_{Geon}\left(1-\frac{\gamma}{2}\right)$$
$$\left(1-\frac{\xi}{2}\right) = \hat{Q}_{nGeo}\left(1-\frac{\eta}{2}\right)\hat{Q}_{Geon}\left(1-\frac{\gamma}{2}\right)$$

Neglecting the second order terms, we can write:

$$\left(1 - \frac{\xi}{2}\right) = 1 - \frac{\gamma}{2} - \hat{Q}_{nGeo} \frac{\eta}{2} \hat{Q}_{Geon}$$

$$\underline{\xi} = \underline{\gamma} + \hat{Q}_{nGeo} \underline{\eta} \hat{Q}_{Geon}$$

Finally, we can write the covariance matrix on vector $\underline{\xi}$, i.e., the so-called "attitude quaternion covariance", as follows :

$$\sigma^{2}\left(\underline{\xi}\right) = \sigma^{2}\left(\underline{\gamma}\right) + \hat{C}_{n}^{Geo}\sigma^{2}\left(\underline{\eta}\right)\left(\hat{C}_{n}^{Geo}\right)^{T}$$

The standard deviations on vector $\underline{\xi}$ components are noted:

- $\sigma(\underline{\xi}_1) \ \sigma(\underline{\xi}_2)$
- $\sigma(\underline{\xi}_3)$

<u>N.B.:</u> $\sigma^2(\underline{\gamma})$, \hat{C}_n^{Geo} and $\sigma^2(\underline{\eta})$ are computed by the navigation algorithm.

Expression of Euler angles covariance from error vector covariance

The covariance of vector $\underline{\eta}$ is related to the covariance of the roll, pitch and yaw variances as follows :

$$\sigma^{2} \begin{pmatrix} \delta R \\ \delta T \\ -\delta A \end{pmatrix} = F \sigma^{2} \begin{pmatrix} v_{x} \\ v_{y} \\ v_{z} \end{pmatrix} F^{t}$$

where

$$F = \begin{pmatrix} -\frac{\cos \hat{A}}{\cos \hat{T}} & \frac{\sin \hat{A}}{\cos \hat{T}} & 0\\ -\sin \hat{A} & -\cos \hat{A} & 0\\ -\tan \hat{T} \cos \hat{A} & \tan \hat{T} \sin \hat{A} & -1 \end{pmatrix}$$

IXSEA ICCB1

This protocol is not available for all products. Refer to the tables of the section 4.4.1 to know if this protocol is available for your product.

- Standard:
- Data sent: Status, Heading , Roll, Pitch, Horizontal speed over ground, Checksum
- Data frame: the frame contains 7 fields 15 bytes. MSB are sent first.

Message <f0><f1><f2><f6></f6></f2></f1></f0>				
Field 0	Byte 0	0x02	Start of sentence	
Field 1	Byte 1	Status	Status byte (see table below)	
Field 2	Bytes 2 to 4	Heading	Unsigned 24 bits integer $2^{24} = 360^{\circ}$	
			LSB = 0.00002146°	
Field 3	Bytes 5 to 7	Roll	Signed 24 bits integer +/- 2^{23} = +/-180°	
			Sign "+" when port side up	
			LSB = 0.00002146°	
Field 4	Bytes 8 to 10	Pitch	Signed 24 bits integer +/- 2^{23} = +/-180°	
			Warning: Opposite sign of OCTANS usual	
			convention	
			Sign "+" when bow up	
			LSB = 0.00002146°	
Field 5	Bytes 11 to 12	Horizontal speed norm	Unsigned 16 bits integer	
		over ground	LSB= 1 cm/s	
Field 6	Bytes 13 to 14	Checksum (CRC16-CCITT)	Computed on bytes 1 to 12	

The table below details status byte bit definition according to OCTANS System status byte tables (see Table 6 and Table 7) and OCTANS User status bit table (see Table 8):

Status byte bit index	Description	Corresponding System or User status bits
0	'1' = Data is invalid	User status bits 1 or 2 or 27
	ʻ0' = Data is valid	
1	'1' = Initial alignment	User status bit 5
	'0' = End of initial alignment	
2	'1' = Fine alignment in progress	N/A
	'0' = End of fine alignment	
3	'1' = Internal sensor error	User status bits 15 or 28
	'0' = Internal sensor OK	
4	'1' = Algorithm error	User status bits 1 or 2 or 27
	'0' = Algorithm OK	
5	'1' = Input stream error	System status 1 bits 0, 1, 2, 3, 4, 5
	'0' = Input stream OK	
6	'1' = Output stream error	System status 1 bits 16, 17, 18, 19, 20, 21
	'0' = Output stream OK	
7	N/A	

IXSEA TAH

This protocol is not available for all products. Refer to the tables of the section 4.4.1 to know if this protocol is available for your product.

- Standard: NMEA 0183 Output
- Data sent: Roll, Pitch, Heading, Heave, surge, sway, linear speeds, heading rotation rate Checksum
- Data frame: This protocol has a fixed length. All data are padded with "0" to maintain fixed length of protocol.

Important

The value of the heave without lever arm is set to 0 when selecting Smart heave in the web-based user interface with this protocol for the output settings.

\$PHOCT,01,hhmmss.sss,G,AA,HHH.HHH,N,eRRR.RRR,L,ePP.PPP,K,eFF.FFF,				
M,eHH.HHH,eS	M,eHH.HHH,eSS.SSS,eWW.WWW,eZZ.ZZZ,eYY.YYY,eXX.XXX,eQQQ.QQ*hh			
\$PHOCT	is the header			
01	is the protocol version identifier			
hhmmss.sss	is the UTC valid time of observations			
	hh is the local zone hours (from 00 to 23 hours)			
	mm is the local zone minutes (from 00 to +59)			
	ss.sss is the local zone seconds (from 00.000 to +59.999)			
G	is UTC Time status: T=Valid E=Invalid (*)			
AA	is the OCTANS latency for heading, roll, pitch AA= 03 (OCTANS IV) AA= 25			
	(OCTANS III) (data latency in ms to be used if UTC time of observations is not			
	used) (**)			
ННН.ННН	is the true heading in degree (from 000.000 to 359.999)			
Ν	is the True Heading status: T=Valid E=Invalid I=Initializing			
eRRR.RRR	is the Roll in degree (e= +/-, positive if port side up)			
	from -180.000 to +180.000			
L	is the Roll status: T=Valid E=Invalid I=Initializing			
ePP.PPP	is the Pitch degree (e= +/-, positive if bow down),			
	from -90.000 to +90.000			
К	is the Pitch status: T=Valid E=Invalid I=Initializing			
eFF.FFF	is the Heave without Lever arms applied in meters			

\$PHOCT,01,hhr	nmss.sss,G,AA,HHH.HHH,N,eRRR.RRR,L,ePP.PPP,K,eFF.FFF,
M,eHH.HHH,eS	S.SSS,eWW.WWW,eZZ.ZZZ,eYY.YYY,eXX.XXX,eQQQ.QQ*hh
	(e= +/-, positive up) from -99.999 to +99.999
Μ	is the Heave status (also used for surge, sway & speed) : T=Valid E=Invalid
	I=Initializing
eHH.HHH	is the Heave with Chosen lever arms applied in meters
	(e= +/-, positive up) from -99.999 to +99.999
eSS.SSS	is the Surge with Lever arms applied in meters
	(e= +/-) from -99.999 to +99.999
eWW.WWW	is the Sway with Lever arms applied in meters
	(e= +/-) from -99.999 to +99.999
eZZ.ZZZ	is the Heave speed with Lever arms in meters/s
	(e= +/-) from -99.999 to +99.999
eYY.YYY	is the Surge speed with Lever arms in meters/s
	(e= +/-) from -99.999 to +99.999
eXX.XXX	is the Sway speed with Lever arms in meters/s
	(e= +/-) from -99.999 to +99.999
eQQQQ.QQ	is the heading rate of turns in degree/minute
	(e= +/-) from -9999.99 to +9999.99
hh	is the NMEA checksum: hexadecimal encoded XOR of all bytes excluding the
	starting character '\$' and the stop one '*

(*) UTC time is valid (G=T) if both PPS pulse and &ZDA telegram are received and valid. If either PPS or ZDA telegram are not received or valid, UTC time flag is invalid : G=E.

(**)The attitude and heading latency of data is as follows

OCTANS: 2.5 ms +/-100 μs rounded to 3 ms in the protocol.

(***) Heave is output without lever arm (field **eFF.FFF)** and Heave with chosen lever arm (Primary, A, B, C) (field **eHH.HHH).**

JAMSTEC/KAIKOU

This protocol is not available for all products. Refer to the tables of the section 4.4.1 to know if this protocol is available for your product.

- Standard: Output JAMSTEC Kaikou proprietary protocol
- Data sent: Heading, Roll, Pitch, Heave, Linear accelerations, Roll speed, Pitch speed, Heading speed, Status
- Data frame: The frame contains 24 bytes in binary format with an header and an "end of frame" fields.

Message	00 90 RRF	RR PPPP hhhh HHHH X1X1 X2X2 X3X3 SRSR SPSP SHSH SS 91		
Byte 0	0x00	Header LSB		
Byte 1	0x90	Header MSB		
Byte 2	0xRRRR	Roll LSB	Roll ± 180°	
Byte 3		Roll MSB	LSB: 180°/2P ^{15P} = 0.00549°	
			Sign "+" when port up	
Byte 4	0xPPPP	Pitch LSB	Pitch ± 180°	
Byte 5		Pitch MSB	LSB: 180°/2P ^{15P} = 0.00549°	
			Sign "+" when bow up	
			Warning: Opposite sign of Octans usual	
			convention	
Byte 6	0xhhhh	Heave LSB	Heave \pm 327 m	
Byte 7		Heave MSB	LSB: 327/2P ^{15P} = 0.00997m	
			Sign "+" when Octans goes down	
			Warning: Opposite sign of Octans usual	
			convention	
Byte 8	0xHHHH	Heading LSB	Heading 0° to 360°	
Byte 9		Heading MSB	LSB: 360°/2P ^{16P} = 0.00549°	
Byte 10	0xX1X1	XB_{V1B} acceleration	XB_{V1B} acceleration \pm 3.0g	
		LSB	LSB: 3.0/2P ^{15P} = 91.6 μg	
Byte 11		XB _{V1B} acceleration		
		MSB		
Byte 12	0xX2X2	XB _{V2B} acceleration	XB_{V2B} acceleration \pm 3.0g	
			LSB: 3.0/2P ^{15P} = 91.6 μg	
Byte 13	13 XB _{V2B} acceleration	Warning: Opposite sign of Octans usual		
			convention	

Message	00 90 RRF	RR PPPP hhhh HHHH >	X1X1 X2X2 X3X3 SRSR SPSP SHSH SS 91
Byte 14	0xX3X3	XB _{V3B} acceleration	XB_{V3B} acceleration \pm 3.0g
		LSB	LSB: 3.0/2Ρ ^{15Ρ} = 91.6 μg
Byte 15		XB _{V3B} acceleration	Warning: Opposite sign of Octans usual
		MSB	convention
Byte 16	0xSRSR	Roll speed LSB	Roll speed \pm 60°/s
Byte 17		Roll speed MSB	LSB : 60/2P ^{15P} = 0. 00183 °/s
Byte 18	0xSPSP	Pitch speed LSB	- Pitch speed \pm 60°/s
Byte 19		Pitch speed MSB	LSB : 60/2P ^{15P} = 0.00183 °/s
			Warning: Opposite sign of Octans usual
			convention
Byte 20	0xSHSH	Heading speed MSB	heading speed \pm 60°/s
Byte 21		Heading speed MSB	LSB : 60/2P ^{15P} = 0. 00183 °/s
			Warning: Opposite sign of Octans usual
			convention
Byte 22	0xSS	Status	$0 \text{xFF} \Rightarrow \text{OK}$
			$0xAA \Rightarrow alignment$
			$0x00 \Rightarrow error$
Byte 23	0x91	End of frame	

Each data is "two complemented" coded except Heading.

MAHRS

This protocol is not available for all products.

Refer to the tables of the section 4.4.1 to know if this protocol is available for your product.

- Standard: ASCII standard
- Data sent: Status, Roll, Pitch, Heading, Speed, Heave, Surge, Sway, Time
- Each field is separated by <Space> Character. Frame ended with <CR><LF>
- Fix length message : 56 bytes in ASCII format

If ZDA tick box is checked a \$PHZDA telegram is added to the protocol output messages, see section 3.2.1.5.

:S <sp>MR <sp>hhmn</sp></sp>	RRR <sp>MPPPP<sp>HI nss.ss <cr><lf></lf></cr></sp></sp>	HHHH <sp>MSSSS<sp></sp></sp>	MEEEE <sp>MUUUU<sp>MWWWW</sp></sp>
where:	:	Header character	0x3A
	S	Status	 'h' for alignment mode^{Note 1} 'H' for nominal mode^{Note 3} 'f' GPS Aided mode & alignment mode^{Note 2} 'F' GPS Aided mode & nominal mode^{Note 4}
	<sp></sp>	Space character	0x20
	MRRR	Roll	Roll \pm 90° (i.e.: -8551=-85.51°) Unit : 0.01° M is the space character when port up M is the minus character when port down
	<sp></sp>	Space character	0x20
	МРРРР	Pitch	Pitch ± 90° (i.e.: 7223=+72.23°) Unit : 0.01° M is the space character when bow up M is the minus character when bow down <u>Warning:</u> Opposite sign of iXBlue usual convention
	<sp></sp>	Space character	0x20
	нннн	Heading	Heading 0 to 359.99° (i.e.: 18210=+182.10°) Unit : 0.01°
	<sp></sp>	Space character	0x20
	MSSSS	External Speed (GPS speed)	Longitudinal speed: 0 to 99.99 m/s (i.e.: 5542=+55.42 m/s) Unit : 0.01 m/s Speed cannot be negative although there is space for a minus sign. Also, when speed not available the SSSS is replaced by "" (four minus signs).
	<sp></sp>	Space character	0x20

:S <sp>MR <sp>hhmr</sp></sp>	RRR <sp>MPPPP<sp>H nss.ss <cr><lf></lf></cr></sp></sp>	IHHHH <sp>MSSSS<s< th=""><th>P>MEEEE<sp>MUUUU<sp>MWWWW</sp></sp></th></s<></sp>	P>MEEEE <sp>MUUUU<sp>MWWWW</sp></sp>
	MEEEE	Heave	Heave: ± 99 m (i.e.: -0756=-7.56 m) Unit: 1 cm M is the space character when system goes up M is the minus character when system goes down
	<sp></sp>	Space character	0x20
	Μυυυυ	Surge	Surge: ± 99 m (i.e.: 0322=+3.22 m) Unit: 1 cm M is the space character when system goes forward M is the minus character when system goes backward
	<sp></sp>	Space character	0x20
	MWWWW	Sway	Sway: ± 99 m (i.e.: 0022=+0.22 m) Unit: 1 cm M is the space character when system starboard M is the minus character when system port
	<sp></sp>	Space character	0x20
	hhmmss.ss	GPS Time	Copy of last GGA UTC Time If GGA UTC time is not received (after timeout= 3 s) field will be fixed to "888888.88" default value.
	<cr><lf></lf></cr>	End of frame	0x0D 0x0A

Note 1 : System status 2 bit 2 (GPS1 detected) or bit 3 (GPS2 detected) set to 0 and Algo status bit 0 (Alignment) set to 1

Note 2 : System status 2 bit 2 (GPS1 detected) or bit 3 (GPS2 detected) set to 1 and Algo status bit 1 (Alignment) set to 1

Note 3 : System status 2 bit 2 (GPS1 detected) or bit 3 (GPS2 detected) set to 0 and Algo status bit 0 (Alignment) set to 0

Note 4 : System status 2 bit 2 (GPS1 detected) or bit 3 (GPS2 detected) set to 1 and Algo status bit 1 (Alignment) set to 0

MDL (trim cube)

This protocol is not available for all products.

Refer to the tables of the section 4.4.1 to know if this protocol is available for your product.

- Standard: Output MDL ASCII standard
- Data sent: Heading, Roll, Pitch
- Data frame:

HhhhhP±xxxxR±yyyy<CR><LF>

where: hhhh is the heading in degrees multiplied by 10

xxxx is the pitch in degrees multiplied by 100

yyyy is the roll in degrees multiplied by 100

If ZDA tick box is checked a \$PHZDA telegram is added to the protocol output messages, see section 3.2.1.5.

MDL 2

This protocol is not available for all products.

Refer to the tables of the section 4.4.1 to know if this protocol is available for your product.

- Standard: Output MDL ASCII standard
- Data sent: Heading, Roll, Pitch, Gyro status
- Data frame:

HhhhhP±xxxxR±yyyyQ<CR><LF>

where:	hhhh is the heading in degrees multiplied by 10
	xxxx is the pitch in degrees multiplied by 100
	yyyy is the roll in degrees multiplied by 100
	Q is the gyro status as follows:
	M Gyro alignment mode
	E Gyro reports good data
	N reports invalid data

If ZDA tick box is checked a \$PHZDA telegram is added to the protocol output messages, see section 3.2.1.5.

MINIFOG OTG MSG8

This protocol is not available for all products.

Refer to the tables of the section 4.4.1 to know if this protocol is available for your product.

- Standard: binary protocol
- Data sent: Heading, Roll, Pitch, Heading rate, Roll rate, Pitch rate, Gyro status
- Data frame:

MiniFOG_OT	G_MSG8 (Ocea	nTools Gyro & Rotation Rates)	
Heading	Byte 1	Value : 'H'	Delimiters to identify the start of
delimiter			heading data
Heading	Byte 2 to 5	Value : In degrees, range in	Heading of the ship, $LSB = 0.1^{\circ}$
		[0°:360°[
Pitch	Byte 6	Value : 'P'	Delimiters to identify the start of Pitch
delimiter			data
Pitch Sign	Byte 7	Value :'+' or '-'	Sign of Pitch value
Pitch	Byte 8 to 11	Value : in degrees, positive bow	Pitch of the ship, $LSB = 0.1^{\circ}$
		up, inside [-90°:90°]	
Roll	Byte 12	Value : '+'	Delimiters to identify the start of Roll
delimiter			data
Roll Sign	Byte 13	Value :'+' or '-'	Sign of Roll value
Roll	Byte 14 to 17	Value : in degrees, positive port	Roll of the ship, LSB = 0.1°
		up, inside [-90°:90°]	
Heading rate	Byte 18	Value : 'X'	Delimiters to identify the start of
delimiter			Heading rate data
Heading rate	Byte19	Value : '+' or '-'	Sign of Heading rate value
sign			
Heading rate	Byte 20 to 23	Value : In degrees/second,	Heading rate of the ship,
		range]-100°/s:100°/s[LSB = 0.01 °/s
Pitch rate	Byte 24	Value : 'Y'	Delimiters to identify the start of Pitch
delimiter			rate data
Pitch rate	Byte 25	Value : '+' or '-'	Sign of Pitch rate value
sign			
Pitch rate	Byte 26 to 29	Value : in degrees/second,	Pitch rate of the ship
		range]-100°/s:100°/s[LSB = 0.01 °/s
Roll rate	Byte 30	Value : 'Z'	Delimiters to identify the start of Pitch
delimiter			rate

MiniFOG_OTG_MSG8 (OceanTools Gyro & Rotation Rates)				
Roll rate sign	Byte 31	Value : '+' or '-'	Sign of Roll rate value	
Roll rate	Byte 32 to 35	Value : in degrees/second, range]-100°/s:100°/s[Roll rate of the ship LSB = 0.01 °/s	
Gyro Status	Byte 36	Value : 'E' or 'D'	Status of Gyro is defined with the help of user status, see <u>Note1</u>	
End point	Byte 37	Value : <cr></cr>	Carriage return	
	Byte 38	Value : <lf></lf>	Line feed	

Note 5: Gyro status shall be:

'E' when word "HRP invalid" is "false" (available on IXBLUE "User status" message) Otherwise it shall be 'D'.

Example:

A packet reading "*H3214P-0132R+0012X+0012Y+0000Z-0085E<cr><If>"*

Wild be : *Heading* 321.4°, *Pitch* 13.2° Up, *Roll* 1.2° to Starboard.

Heading rotation 0.12°/sec increasing heading, *Pitch rotation* 0°/sec pitch, *Roll rotation* 0.85°/sec to Port.

This protocol is not available for all products. Refer to the tables of the section 4.4.1 to know if this protocol is available for your product.

- Standard: Output NMEA 0183 compatible
- Data sent: Roll, Pitch, Heave, Surge, Sway, Status, Date and time (1)
- Data frame: It is composed of
 - □ NMEA **\$HEHDT** Frame see section 3.2.2.6
 - NMEA \$PHTRO Frame see section 3.2.1.14
 - NMEA \$PHLIN Frame see section 3.2.1.9
 - □ NMEA **\$PHINF** Frame see section 3.2.1.9
- (1) And, If ZDA option selected:
 - NMEA **\$PHZDA** Frame see section 3.2.1.5

This protocol is not available for all products. Refer to the tables of the section 4.4.1 to know if this protocol is available for your product.

- Standard: Output NMEA 0183 compatible
- Data sent: Heading, Roll, Pitch, Heave, Surge, Sway, Status, Linear Speeds, Date and time (1)
- Data frame: It is composed of
 - □ NMEA **\$HEHDT** Frame see section 3.2.2.6
 - □ NMEA **\$PHTRO** Frame see section 3.2.1.14
 - □ NMEA **\$PHLIN** Frame see section 3.2.1.9
 - NMEA **\$PHSPD** Frame see section 3.2.1.12
 - □ NMEA **\$PHINF** Frame see section 3.2.1.9
- (1) And, If ZDA option selected:
 - NMEA **\$PHZDA** Frame see section 3.2.1.5

This protocol is not available for all products.

Refer to the tables of the section 4.4.1 to know if this protocol is available for your product.

- Standard: Output NMEA 0183 compatible
- Data sent: Heave, Surge, Sway, Status, Linear Speeds, Status, Date and Time (1)
- Data frame: It is composed of
 - NMEA \$PHLIN Frame see section 3.2.1.9
 - NMEA **\$PHSPD** Frame see section 3.2.1.12
 - NMEA **\$PHINF** Frame see section 3.2.1.9

(1) And, If ZDA option selected:

NMEA **\$PHZDA** Frame see section 3.2.1.5

This protocol is not available for all products. Refer to the tables of the section 4.4.1 to know if this protocol is available for your product.

- Standard: Output NMEA 0183 compatible
- Data sent: Heading, Roll, Pitch

Heave, Surge, Sway with and without lever arms compensation. Linear speeds with lever arms compensation.

Status, Date and time (1)

Important

The value of the heave without lever arm is set to 0 when selecting Smart heave in the web-based user interface with this protocol for the output settings.

• Data frame: It is composed of

NMEA \$HEHDT Frame	see section 3.2.2.6
NMEA \$PHPOS Frame	see section 3.2.1.10
NMEA \$PHVIT Frame	see section 3.2.1.15
NMEA \$PHTRO Frame	see section 3.2.1.14
NMEA \$PHINF Frame	see section 3.2.1.9

- (1) And, If ZDA option selected:
 - NMEA **\$PHZDA** Frame see section 3.2.1.5

NMEA PRDID

This protocol is not available for all products. Refer to the tables of the section 4.4.1 to know if this protocol is available for your product.

- Standard: Output NMEA 0183.
- Data sent: Heading, Roll, Pitch, Date and time (1)
- Data frame:

\$PRDID,sxxx.xx,syyy.yy,zzz.zz,*hh<CR><LF>

- where: xxx.xx is the pitch in degrees with sign s=+ when port up and s=- when port down
 - Warning: opposite sign from OCTANS convention
 - yyy.yy is the roll in degrees with sign s=+ when bow up and s=- when bow down
 - zzz.zz is the heading
 - hh is the checksum

\$--ZDA,hhmmss.ss,dd,mm,yyyy,hh,mm*hh<CR><LF> (1)

- where: hhmmss.ss is UTC time synchronized with the last PPS frame received
 - dd is the UTC day (from 01 to 31)
 - mm is the UTC month (from 01 to 12)
 - yyyy is the UTC year
 - hh is the local zone hours (from 00 to \pm 13 hours)
 - mm is the local zone minutes (from 00 to +59)
- (1) If ZDA option selected.

OCTANS STANDARD

This protocol is not available for all products. Refer to the tables of the section 4.4.1 to know if this protocol is available for your product.

- Standard: Output NMEA 0183 compatible
- Data sent: Heading, Roll, Pitch, Heave, Surge and Sway, Linear speeds, Vessel speed and latitude compensation values, Status, Date and Time (1)

Important

The value of the heave without lever arm is set to 0 when selecting Smart heave in the web-based user interface with this protocol for the output settings.

•	Da	ita frame:	It is compose	ed of		
<u>Sta</u>	Standard frames:					
		NMEA \$HE	HDT Frame	see section 3.2.2.6		
		NMEA \$HE	THS Frame	see section 3.2.2.8		
		NMEA \$PH	TRO Frame	see section 3.2.1.14		
		NMEA \$PH	LIN Frame	see section 3.2.1.9		
		NMEA \$PH	SPD Frame	see section 3.2.1.12		
		NMEA \$PH	CMP Frame	see section 3.2.1.6		
		NMEA \$PH	INF Frame	see section 3.2.1.9		

(1) And, If ZDA option selected: Time and Date

□ NMEA **\$PHZDA** Frame see section 3.2.1.5

Additional frames sent on the repeater port:

NMEA \$TIME Frame	see section 3.2.1.19
NMEA \$PHZDA Frame	see section 3.2.1.5
NMEA \$STSYS Frame	see section 3.2.1.18
NMEA \$STALG Frame	see section 3.2.1.16
NMEA \$STSOR Frame	see section 3.2.1.17
NMEA \$ST_HL Frame	see section 3.2.1.16

PAHRS

This protocol is not available for all products. Refer to the tables of the section 4.4.1 to know if this protocol is available for your product.

Data frame:

\$PBAE,AH u*hh <cr></cr>	RS,H.HHH,P.PPP,R.RRR,h.hhh,p.ppp,r.rrr,A.AAA,B.BB <lf></lf>	B,sssssss,ttttttt,uuuuuuu		
\$PBAE	Start of proprietary sentence and Manufacturer ID			
AHRS	Sentence identifier			
Н.ННН	Heading in degrees 0° to 359.999° Positive and increasing when bow turns starboard.	Note 6		
P.PPP	Pitch in degrees ±90.000° Positive for front side/bow up	Note 6, Note 7		
R.RRR	Roll in degrees ±180.000 Positive for left side/port up	Note 6, Note 7		
h.hhh	Heading rate in degrees/sec ±100.000°/sec. Positive when heading angle increasing	Note 6		
p.ppp	Pitch rate in degrees/sec ±100.000°/sec. Positive when pitch angle increasing	Note 6		
r.rrr	Roll rate in degrees/sec ±100.000°/sec. Positive when roll angle increasing	Note 6		
A.AAA	Polar Heading in degrees 0° to 359.999° Positive and increasing when bow turns starboard	Note 6		
B.BBB	Polar Heading rate in degrees/sec ±100.000°/sec. Positive when polar heading angle increasing	Note 6		
SSSSSSS	AHRS User Status	8 ASCII characters representing the 32-bit OCTANS user status word encoded as 8 hexadecimal characters.		
ttttttt	AHRS System Status 1	8 ASCII characters representing the 32-bit OCTANS System status 1 word encoded as 8 hexadecimal characters.		

Data sent: Heading, pitch, roll, heading rate, pitch rate, roll rate, polar heading, polar heading rate and OCTANS status. The data field delimiter is the comma character.

\$PBAE,AHRS,H.HHH,P.PPP,R.RRR,h.hhh,p.ppp,r.rrr,A.AAA,B.BBB,ssssssss,tttttttt,uuuuuuu u*hh<CR><LF>

นนบนนนน	AHRS System Status 2	8 ASCII characters representing the 32-bit OCTANS System status 2 word encoded as 8 hexadecimal characters.
*	Checksum field delimiter	
hh	Checksum field value	Hexadecimal value of the XOR of each character in the sentence, between, but excluding \$ and *
<cr><lf ></lf </cr>	End of sentence	

Note 6:

3 digits after the decimal point and necessary digits and minus sign before. Hence to transmit a Pitch of -10.76 degrees, the following characters -10.760 will be sent.

Note 7:

Sign convention of the roll and pitch are set to ISO Convention.

	ISO Convention	
Roll > 0	for left-side / port up	
Pitch > 0	for front-side / bow up	

Note 8:

Null data parameter is output if that parameter is invalid.

This is defined below

if OR(Bit=5,15,27,30, 31 of OCTANS user status)= 1 then telegram output shall be:

\$PBAE,AHRS,,,,,,ssssssss,tttttttt,uuuuuuuu*hh<CR><LF>

POS MV GROUP111

This protocol is not available for all products.Refer to the tables of the section 4.4.1 to know if this protocol is available for your product.Standard:Binary POS MV Group 111 Aplanix proprietary protocolData sent:Delayed Heave, Real time heaveData frame:The frame contains a header, 15 fields with 84 bytes in binary format.
Reference document: POSMV 320 V3 Ethernet SCSI ICD 30 January
2003 POS MV GROUP111

Message <f0><f1><f2><f15></f15></f2></f1></f0>				
Field 0	Byte 0 to 3	\$GRP	char	Group start
Field 1	Bytes 4 to 5	111	ushort	Group ID
Field 2	Bytes 6 to 7	76	ushort	Bytes count
Field 3	Bytes 8 to 15	Time 1	double	Seconds (NOT USED)
Field 4	Bytes 16 to 23	Time 2	double	Seconds (NOT USED)
Field 5	Bytes 24 to 31	Distance tag	double	meters (NOT USED)
				Value: bits 0-3 (*)
	Bytes 32	es 32 Time types		0: Time 1: AHRS time
			byte	1: Time 1: GPS time (NOT USED)
				2: Time 1: UTC time
Field 6				Value: bits 4-7 (*)
				0: Time 2: AHRS time (NOT USED)
				1: Time 2: GPS time (NOT USED)
				2: Time 2: UTC time (NOT USED)
				3: Time 2: User time (NOT USED)
				Value: bits 0-3
	Dute 00	Distance time		0: N/A
Field /	Byte 33	Distance type		1: distance (NOT USED)
Field 4	Bytes 34 to 37	Smart Heave	float	Delayed heave in meters, positive down
		1 Smart Heave RMS	fleet	Delayed heave standard deviation
rieiu 5	ыуtes 38 to 41		noat	in meters (NOT USED)

Message <f0><f1><f2><f15></f15></f2></f1></f0>				
				Bit 0=1 : Smart heave Valid
Field 6	Bytes 42 to 45	Status	ulong	Bit1=1 : Real-Time heave Valid
				Bit 2 to 31 : Reserved
Field 7	Bytes 46 to 49	Real Time Heave	float	in meters, positive down
Field 9	Butos 50 to 52	Pool Timo Hoovo PMS	float	standard deviation
rieiu o	Bytes 50 to 53	Real Time Heave Rivis	noat	in meters (NOT USED)
Field 0	Duton E4 to 61	Haava Tima 1	doublo	Delayed heave time
Field 9	Dyles 54 10 6 1		double	seconds
Field 10	Bytes 62 to 69	Heave Time 2	double	(NOT USED)
Field 11	Bytes 70 to 73	Rejected IMU data count	ulong	(NOT USED)
Field 12	Bytes 74 to 77	Out of range IMU data count	ulong	(NOT USED)
Field 13	Bytes 78 to 79	Pad	byte	Set to 0
Field 14	Butos 80 to 81	Chocksum	usbort	16 bit sum of all data in the
	Dyles 00 10 01	CHECKSUII	ushull	data group: byte 34 to 103
Field 15	Bytes 82 to 83	\$#	char	Group end

(*) Only AHRS time or UTC time will be flagged. UTC time is flagged when AHRS time synchronization with GPS is valid (ZDA or ZDA+PPS valid). It is highly recommended to use PPS pulse for accurate timing.

POSTPROCESSING

This protocol is not available for all products. Refer to the tables of the section 4.4.1 to know if this protocol is available for your product.

Please note that this protocol is not detailed in this documentation.

To get more information about this protocol, contact iXBlue.

PSXN019

This protocol is not available for all products.

Refer to the tables of the section 4.4.1 to know if this protocol is available for your product.

- Standard: Output NMEA 0183 compatible with Seatex MRU system
- Data sent: Roll, Pitch, Heave, Date
- Data frame: Contains 1 NMEA data frames: the PSXN frame hereafter

\$PSXN,S,ddd,X1,X2,X3,X4,,*hh <cr><lf></lf></cr>				
S	Status S = 10 for valid data S = 11 for invalid <i>d</i> ata	<u>Note 1</u>		
ddd	User identification = 019	Three fixed Ascii characters		
X1	Roll in radian Positive for left-port side up	Note 2		
X2	Pitch in radian Positive for front side-bow up <u>Warning:</u> Opposite sign of OCTANS usual convention	<u>Note 2</u>		
Х3	Heave in meters Positive when OCTANS goes up	Note 2		
X4	Date in second since 1 January 1970 00:00:00 (Epoch Time)	<u>Note 3</u> Note 4		
hh	Checksum			

- Note 1 S = 11 when one of the OCTANS User status HRP_NOT_VALID or FAILURE_MODE or DEGRADED_MODE is set.
 - S = 10 otherwise
- Note 2 X1, X2, X3 are written as floats in scientific format, with 3 digits after the decimal point and the number of digits before the decimal point depending of value (example : -2.564e01)

Note 3 Integer format

Note 4 Epoch Time needs UTC synchronization. Otherwise it starts from 0 at system start-up.

PTNTHPR

This protocol is not available for all products.

Refer to the tables of the section 4.4.1 to know if this protocol is available for your product.

- Standard: ASCII
- Data sent: Heading, Roll, Pitch, Validity Status
- Data frame:

\$PTNTHPR,h.h,a,p.p,b,r.r,c*hh <cr><lf></lf></cr>			
\$PTNTHPR,	Start of proprietary sentence		
h.h,	Heading in degrees 0° to 360° Positive and increasing when bow turns starboard.	<u>Note 1</u>	
а,	Heading status	Note 2	
р.р,	Pitch in degrees ±90° Positive for front side-bow down	Note 1	
b,	Pitch status	Note 2	
r.r,	Roll in degrees ±180° Positive for left side-port side up	Note 1	
с	Roll status	Note 2	
*	Checksum field delimiter		
hh	Checksum field value	Hexadecimal value of the XOR of each character in the sentence, between, but excluding \$ and *	
<cr><lf></lf></cr>	End of sentence		

Note 1: 1 digit after the decimal point and necessary digits and minus sign before.

Note 2: Status table of HMR3000 and corresponding OCTANS status table are described below:

Since we cannot dissociate alarm for heading, roll and pitch independently, the alarm status will be identical for the 3 physical parameters heading, roll and pitch.

If the status field indicates low or high alarm, then the heading, roll and pitch fields will be null ",,".

Status letter	HMR3000	OCTANS User status	
L	low alarm	Bit 30= 1	Degraded mode
м	low warning	bit 7 or bit 16 or bit 17 or bit 18 or bit 19 or Bit 20 or Bit 21 or Bit 22 or Bit 23	DSP overload or Input A,B,R Error or CPU overload or OUTPUT A,B,C,R full
N	normal	Bit 27=0 & Bit 31= 0	Heading/Roll/Pitch valid and No Failure mode

Status letter	HMR3000	OCTANS User status	
0	high warning	Bit 3= 1 or Bit 15= 1	Heave init or Sensor Error
Р	high alarm	Bit 27 or Bit 31 = 1	Heading/Roll/Pitch Invalid or Failure mode
С	Tuning analog circuit	N/A	

If ZDA tick box is checked a \$PHZDA telegram is added to the protocol output messages, see section 3.2.1.5.

SEAPATH

This protocol is not available for all products. Refer to the tables of the section 4.4.1 to know if this protocol is available for your product.

 Standard:
 Binary PFreeHeave® Kongsberg Seatex proprietary protocol

 Data sent:
 Time, Latitude, Longitude, Altitude, Heave, North Velocity, East

 Velocity, Down Velocity, Roll, Pitch, Heading, Roll Rate, Pitch Rate,

 Yaw Rate, Status.

Data frame:

18 fields - 42 bytes. All multi-byte data is sent MSB first.

Message	<f0><f1><f2></f2></f1></f0>	<f17></f17>	
Field 0	Byte 0	ʻq'	Synchronization byte
Field 1	Bytes 1 to 4	System time (Synchro with GPS time)	32 bits integer (seconds)
Field 2	Byte 5	System time (Synchro with GPS time) Fraction of seconds	Unsigned 8 bits integer 0.01 seconds (0 to 99)
Field 3	Bytes 6 to 9	Latitude (Note 2) '+': North of equator	Signed 32 bits integer +/- 2^{31} = +/- 180°
Field 4	Bytes 10 to 13	Longitude (Note 2) '+': East of Greenwich	Signed 32 bits integer +/- 2^{31} = +/- 180°
Field 5	Bytes 14 to 17	Altitude (Note 2)	Signed 32 bits integer (centimeters)
Field 6	Bytes 18 to 19	Heave "+" when down	Signed 16 bits integer (centimeters) <u>Warning:</u> Opposite sign of GYRO usual convention
Field 7	Bytes 20 to 21	North Velocity	Signed 16 bits integer (centimeters/second)
Field 8	Bytes 22 to 23	East Velocity	Signed 16 bits integer (centimeters/second)
Field 9	Bytes 24 to 25	Down Velocity	Signed 16 bits integer (centimeters/second)
Field 10	Bytes 26 to 27	Roll Sign "+" when port side up	Signed 16 bits integer +/- 2^{15} = +/- 180°
Field 11	Bytes 28 to 29	Pitch Sign "+" when bow up	Signed 16 bits integer +/-2 ¹⁵ = +/- 180° <u>Warning:</u> Opposite sign of GYRO usual convention
Field 12	Bytes 30 to 31	Heading	Unsigned 16 bits integer $2^{15} = 180^{\circ}$
Field 13	Bytes 32 to 33	Roll rate (Note 1) Positive when roll increases	Signed 16 bits integer $\pm -2^{15} = \pm -180^{\circ}/s$

Field 14	Bytes 34 to 35	Pitch rate (Note 1) Positive when pitch increases	Signed 16 bits integer $+/-2^{15} = +/-180^{\circ}/s$ <u>Warning:</u> Opposite sign of GYRO usual convention
Field 15	Bytes 36 to 37	Heading rate (Note 1) Positive when heading increases	Signed 16 bits integer $\pm -2^{15} = \pm -180^{\circ}/s$
Field 16	Bytes 38 to 39	Status (Note 3)	0x00AA : Invalid data 0x0000 : Data valid
Field 17	Bytes 40 to 41	Checksum (CRC) (Note 4)	Computed on bytes 1 to 39

Note 1: on dual use products, rotation rate resolution is limited to 3.6 deg/h to comply with export regulation

Note 2: position and altitude are duplicated from GPS input

Note 3: data is flagged as invalid when HRP invalid is flagged (ALIGNMENT or HEADING ERROR bits in gyrocompass algorithm status 1)

Note 4: CRC is computed as follows:

unsigned short blkcrc(unsigned char* bufptr, unsigned len)

```
{
unsigned char i;
unsigned short data;
unsigned short crc = 0xffff;
      if (len == 0)
                 return ~crc;
      do
      {
                 for (i = 0, data = (unsigned short)(0xff & *bufptr++); i < 8; i++, data >>= 1)
                 {
                           if ((crc & 0x0001) ^ (data & 0x0001))
                           {
                                      crc = (crc >> 1) ^ 0x8408;
                           }
                           else
                           {
                                      crc >>= 1;
                           }
                 }
      } while (--len);
      crc = \sim crc;
      data = crc;
      crc = (crc << 8) | ((data >> 8) & 0xff);
      return crc;
```

```
}
```


SEATEX DHEAVE

This protocol is not available for all products. Refer to the tables of the section 4.4.1 to know if this protocol is available for your product.

Standard:	Binary PFreeHeave® Kongsberg Seatex proprietary protocol
Data sent:	Smart Heave™ and Time validity of data.
Data frame:	The frame contains a header, 6 fields with 13 bytes in binary format.
	The signed integers are represented as two-complement numbers.
	For multi-byte elements, the MSB (Most Significant Byte) is transmitted
	first.

The PFreeHeave® output is delayed by a few minutes due to the processing.

Message <f0><f1><f2><f6></f6></f2></f1></f0>				
Field 0	Byte 0	0xAA	Unsigned	Header
Field 1	Byte 1	0x52	Unsigned	Header
Field 2	Bytes 2 to 5	Time (*)	Integer	In seconds
Field 3	Bytes 6 to 7	0 to 9999	Unsigned	Time, fraction of second: 0.0001 s
Field 4	Bytes 8 to 9	Smart Heave™	Integer	Delayed heave,
				in centimeters, positive down
Field 5	Byte 10	Status word	Bit-fields	0 : Heave is valid
				1 : Heave is invalid
Field 6	Bytes 11 to 12	Checksum (**)	Unsigned	See Note 1

(*) The time fields contain time of validity of the data. The integer second part of time is counted from 1970-01-01 UTC time, ignoring leap seconds.

((**) Checksum is calculated as a 16-bit Block Cyclic Redundancy Check of all bites between, but not including the Header and Checksum fields. The CRC algorithm is describes in Note 1.

Note 1: Cyclic redundancy check algorithm

The 16-bit Block Cyclic Redundancy Check algorithm used to calculate the checksum in some formats is described in C and Fortran source code below.

C code

```
#define POLY 0x8408
unsigned short blkcrc(
unsigned char *bufptr, /* message buffer */
unsigned long len /* number of bytes */
)
{
unsigned char i;
unsigned short data;
unsigned short crc = 0xffff;
if (len == 0L) {
return ~crc;
}
do {
for (i=0, data = (unsigned short) (0xff & *bufptr++);
i < 8;
i++, data >>= 1) {
if ((crc & 0x0001) ^ (data & 0x0001)) {
crc = (crc >> 1) ^ POLY;
} else {
crc >>= 1;
}
}
} while (--len);
crc = ~crc;
data = crc;
crc = (crc << 8) | ((data >> 8) & 0xff);
return crc;
}
```


SHINKAI 6500 HDT

This protocol is not available for all products. Refer to the tables of the section 4.4.1 to know if this protocol is available for your product.

- Standard: Output JAMSTEC Shinkai 6500 proprietary protocol
- Data sent: Heading, Roll, Pitch
- Data frame: The frame contains 18 bytes in the following format

Message		
Byte 0	0x02	Binary, Frame header (STX)
Byte 1	0x30 to 0x39	Heading: ASCII 0 (0x30) to 9 (0x39), Number of hundreds in heading
Byte 2	0x30 to 0x39	Heading: ASCII 0 (0x30) to 9 (0x39), Number of tens in heading
Byte 3	0x30 to 0x39	Heading: ASCII 0 (0x30) to 9 (0x39), Number of units in heading
Byte 4	0x30 to 0x39	Heading: ASCII 0 (0x30) to 9 (0x39), First decimal place (10 ⁻¹) in heading
Byte 5	0x30 to 0x39	Heading: ASCII 0 (0x30) to 9 (0x39), Second decimal place(10 ⁻²) in heading
Byte 6	0x20 or 0x2B	Roll sign "(space) " or "-" : ASCII "(space)"(0x20) "-" (0x2B), Sign "- " when port
		down
Byte 7	0x30 to 0x39	Roll: ASCII 0 (0x30) to 9 (0x39), Number of tens in roll
Byte 8	0x30 to 0x39	Roll: ASCII 0 (0x30) to 9 (0x39), Number of units in roll
Byte 9	0x30 to 0x39	Roll: ASCII 0 (0x30) to 9 (0x39), First decimal point in roll
Byte 10	0x30 to 0x39	Roll: ASCII 0 (0x30) to 9 (0x39), Second decimal point in roll
Byte 11	0x20 or 0x2B	Pitch sign "(space) " or "-" : ASCII "(space)"(0x20) "-" (0x2B)
		Sign "- " when bow down Warning : opposite convention / OCTANS
		convention
Byte 12	0x30 to 0x39	Pitch: ASCII 0 (0x30) to 9 (0x39), Number of tens in pitch
Byte 13	0x30 to 0x39	Pitch: ASCII 0 (0x30) to 9 (0x39), Number of units in pitch
Byte 14	0x30 to 0x39	Pitch: ASCII 0 (0x30) to 9 (0x39), First decimal place (10 ⁻¹) in pitch
Byte 15	0x30 to 0x39	Pitch: ASCII 0 (0x30) to 9 (0x39), Second decimal place (10 ⁻²) in pitch
Byte 16	0x03	Binary, End of frame (ETX)
Byte 17		BCC, Block Check Character: Binary, XOR of the 16 bytes 1 to 16

For example: When heading 359.12 Roll +35.41 and Pitch -12.52, Data frame would be as follows;

SIMRAD EM

This protocol is not available for all products. Refer to the tables of the section 4.4.1 to know if this protocol is available for your product.

- Standard: Output Simrad proprietary protocol
- Data sent: Heading, Roll, Pitch, Heave, Status
- Data frame:

The frame contains 10 bytes in binary format.

Message	SS 90 RRRR PPPP hhhh HHHH		
Byte 0	0xSS	Sync byte Sensor status	$0x90 \Rightarrow OK$ $0x9A \Rightarrow alignment$
Byte 1	0x90	Sync byte	
Byte 2 Byte 3	0xRRRR	Roll LSB Roll MSB	Roll ± 180° LSB : 0.01° Sign "+" when port up
Byte 4	0xPPPP	Pitch LSB	Pitch \pm 180°
Byte 5		Pitch MSB	Sign "+" when bow up <u>Warning:</u> Opposite sign of Octans usual convention
Byte 6	0xhhhh	Heave LSB	Heave \pm 10 m
Byte 7		Heave MSB	LSB : 0.01 m Sign "+" when Octans goes up
Byte 8	0xHHHH	Heading LSB	Heading 0° to 360°
Byte 9		Heading MSB	LSB : 0.01°

Each data is "two complemented" coded except Heading.

STOLT OFFSHORE

This protocol is not available for all products.

Refer to the tables of the section 4.4.1 to know if this protocol is available for your product.

- Standard: Output NMEA 0183 compatible with Seatex MRU system
- Data sent: Heading, Roll, Pitch, Roll speed, Pitch speed, Heading speed

\$PSXN,S,c	Note 3	
S	Status S = 10 for data valid S = 11 for data invalid	Note 1
ddd	User identification = 014	Three fixed Ascii characters
X1	Pitch in radian <u>Warning:</u> Opposite sign of OCTANS usual convention	Note 2
X2	Roll in radian	Note 2
Х3	Heading in radian	Note 2
X4	Pitch speed in radian/second, positive when PSXN pitch value increases <u>Warning:</u> Opposite sign of OCTANS usual convention	Note 2
X5	Roll speed in radian/second, positive when roll increases	Note 2
X6	Heading speed in radian/second, positive when heading decreases	Note 2
hh	Checksum	Note 2

Note 1: S = 10 when OCTANS User status HRP_NOT_VALID is set to 0 S = 11 when OCTANS User status HRP_NOT_VALID is set to 1

Note 2: x1, x2, x3, x4, x5, x6 are written as floats in scientific format (for example -2.5648e01)

Note 3: Telegram sample:

\$PSXN,11,014,-4.000e-03,-1.350e-02,1.254e-01,0.000e+00,0.000e+00,0.000e+00,*0B<CR><LF>

If ZDA tick box is checked a \$PHZDA telegram is added to the protocol output messages, see section 3.2.1.5.

TAH BIN

This protocol is not available for all products.

Refer to the tables of the section 4.4.1 to know if this protocol is available for your product.

 Data frame: The frame contains 17 fields – 59 bytes. For data coded on several bytes, the bytes are sent MSB byte first.

Message <f0><f1><f2><f16></f16></f2></f1></f0>				
Field 0	Byte 0	ID		Fixed value = 42 (0x2A)
Field 1	Byte 1	Message Length		Fixed value = 59 (0x3B)
Field 2	Bytes 2-5	Status		32 bits of the OCTANS user status
Field 3	Bytes 6-9	Time		Unsigned 32 bits integer; [0 to 86400 s] LSB=20.1us System time or UTC time if synchronized.
Field 4	Bytes 10-13	Heading		IEEE Float 32 bits; [0 to 360 deg] Positive and increasing when bow turns starboard.
Field 5	Bytes 14-17	Roll		IEEE Float 32 bits; ±90 deg Positive for left-port side up.
Field 6	Bytes 18-21	Pitch		IEEE Float 32 bits; ±90 deg Positive for front side-bow down.
Field 7	Bytes 22-25	Heave	<u>Note 1</u>	IEEE Float 32 bits; mm Positive when OCTANS goes up
Field 8	Bytes 26-29	Surge	Note 1	IEEE Float 32 bits; mm
Field 9	Bytes 30-33	Sway	Note 1	IEEE Float 32 bits; mm
Field 10	Bytes 34-37	Heading rate		IEEE Float 32 bits; deg/s
Field 11	Bytes 38-41	Roll rate		IEEE Float 32 bits; deg/s
Field 12	Bytes 42-45	Pitch rate		IEEE Float 32 bits; deg/s
Field 13	Bytes 46-49	Heave speed	Note 1	IEEE Float 32 bits; mm/s
Field 14	Bytes 50-53	Surge speed	Note 1	IEEE Float 32 bits; mm/s
Field 15	Bytes 54-57	Sway speed	Note 1	IEEE Float 32 bits; mm/s
Field 16	Byte 58	Checksum		Integer 8 bits; XOR of all the data bytes, not including the Checksum byte

Note 1: with Lever Arm Compensation

TAH BIN SMT

This protocol is not available for all products.

Refer to the tables of the section 4.4.1 to know if this protocol is available for your product.

 Data frame: The frame contains 17 fields – 59 bytes. For data coded on several bytes, the bytes are sent MSB byte first.

Message <f0><f1><f2><f16></f16></f2></f1></f0>			
Field 0	Byte 0	ID	Fixed value = 42 (0x2A)
Field 1	Byte 1	Message Length	Fixed value = 59 (0x3B)
Field 2	Bytes 2-5	Status	32 bits of the OCTANS user status (see 2.2)
Field 3	Bytes 6-9	Time	Unsigned 32 bits integer; [0 to 86400 s] LSB=86400/(2^32-1) ≈ 20.1 us System time or UTC time if synchronized.
Field 4	Bytes 10-13	Heading	IEEE Float 32 bits; [0 to 360 deg] Positive and increasing when bow turns starboard.
Field 5	Bytes 14-17	Roll	IEEE Float 32 bits; ±90 deg Positive for left-port side up.
Field 6	Bytes 18-21	Pitch	IEEE Float 32 bits; ±90 deg Positive for front side-bow down.
Field 7	Bytes 22-25	Heave (note 1)	IEEE Float 32 bits; mm Positive when OCTANS goes up
Field 8	Bytes 26-29	Surge (note 1)	IEEE Float 32 bits; mm
Field 9	Bytes 30-33	Sway (note 1)	IEEE Float 32 bits; mm
Field 10	Bytes 34-37	Heading rate (note 2)	IEEE Float 32 bits; deg/s
Field 11	Bytes 38-41	Roll rate (note 2)	IEEE Float 32 bits; deg/s
Field 12	Bytes 42-45	Pitch rate (note 2)	IEEE Float 32 bits; deg/s
Field 13	Bytes 46-49	Heave speed (note 1)	IEEE Float 32 bits; mm/s
Field 14	Bytes 50-53	Surge speed (note 1)	IEEE Float 32 bits; mm/s
Field 15	Bytes 54-57	Sway speed (note 1)	IEEE Float 32 bits; mm/s
Field 16	Byte 58	Checksum	Integer 8 bits; XOR of all the data bytes, not including the Checksum byte

Note 1: with Lever Arm Compensation.

Note 2: Filtered data: Uses Butterworth second order low pass filter. The default cutoff frequency is set to sampling frequency (200 Hz) / 4. The cutoff frequency is configurable using specific Web MMI command FilterConfX = Fc (where X corresponds to output port identifier and Fc the cutoff frequency 0 < Fc < 200 Hz).

TCM 1/2

This protocol is not available for all products. Refer to the tables of the section 4.4.1 to know if this protocol is available for your product.

- Standard: Output (Trimble)TCM standard
- Data sent: Heading, Roll, Pitch
- Data frame:

Chhh.hPxx.xRyy.y*hh<CR><LF>

where:	hhh.h is the heading in degrees
	xx.x is the pitch in degrees
	yy.y is the roll in degrees
	hh is fixed to FF

If ZDA tick box is checked a \$PHZDA telegram is added to the protocol output messages, see section 3.2.1.5.

TCM 2

This protocol is not available for all products. Refer to the tables of the section 4.4.1 to know if this protocol is available for your product.

- Standard: ASCII, NMEA compliant
- Data sent: Heading, Pitch, Roll, Date and Time (1)
- Data frame:

\$Chhh.hPspp.pRsrr.r*hh<CR><LF>

where:	\$C is a header
	hhh.h is the heading, ranging from 0 to 359.9
	P is a separator for pitch
	spp.p is the signed pitch in degrees
	s = - bow down ; s = no character when bow up
	ranging from –89.9 to +90.0, with

Warning: reverse convention / standard OCTANS convention

R is a separator for roll Srrr.r is the signed roll in degrees s = - port down ; s = no character when port up ranging from -179.9 to +180.0 hh is the NMEA checksum : XOR of hexa-coded ASCII characters from \$ (excluded) to * (excluded)

\$--ZDA,hhmmss.ss,dd,mm,yyyy,hh,mm*hh<CR><LF> (1)

where:	hhmmss.ss is UTC time synchronized with the last PPS frame received
	dd is the UTC day (from 01 to 31)
	mm is the UTC month (from 01 to 12)
	yyyy is the UTC year
	hh is the local zone hours (from 00 to \pm 13 hours)
	mm is the local zone minutes (from 00 to +59)
(1) If ZDA option	selected.

TECHSAS

This protocol is not available for all products. Refer to the tables of the section 4.4.1 to know if this protocol is available for your product.

- Standard: Output NMEA 0183
- Data sent: Heading, Roll, Pitch, Heave, standard deviations for Heading, Roll and Pitch, Status flags
- Data frame:

\$PASHR,nnm	mss.sss,н.нн, і ,ак.кк,рр.рр,со.оо,г.ггг,р.ррр,п	I.nnn,x,y^nn <cr><lf></lf></cr>
hhmmss.sss	is the UTC of the data	
H.HH	is the heading in degrees, no sign character	2 digits after decimal point
Т	is a fixed character = 'T'	
aR.RR	is the roll in degrees and a, its sign character	2 digits after decimal point
	'+' when port up, '-' when port down	
bP.PP	is the pitch in degrees and b, its sign character	2 digits after decimal point
	'' when bow down, '+' when bow up	
	Warning: Opposite sign of OCTANS usual convention	
cD.DD	is the heave in meters and c, its sign character	
	'' when OCTANS goes up, '+' when OCTANS goes down	
	Warning: Opposite sign of OCTANS usual convention	
r.rrr	Roll standard deviation; Fixed value = 0.0	3 digits after decimal point
р.ррр	Pitch standard deviation; Fixed value = 0.0	3 digits after decimal point
h.hhh	Heading standard deviation; Fixed value = 0.0	3 digits after decimal point
x	is the speed or latitude aiding status flag 0 when manual speed or manual latitude used, otherwise 1	 x = 0 when one of those OCTANS User status bit is set to 1 MANUAL_SPEED_USED MANUAL_LATITUDE_USED otherwise x = 1
у	is the sensor error status flag 1 when ACC or FOG error, otherwise 0	y = 1 when one of those OCTANS User status bit is set to 1 FOG_X1_ANOMALY FOG_X2_ANOMALY FOG_X3_ANOMALY ACC_X1_ANOMALY ACC_X2_ANOMALY ACC_X3_ANOMALY otherwise y = 0
hh	is the checksum	

If ZDA tick box is checked a \$PHZDA telegram is added to the protocol output messages, see section 3.2.1.5.

TMS CCV IMBAT AHRS

This protocol is not available for all products. Refer to the tables of the section 4.4.1 to know if this protocol is available for your product.

- Standard: Output Thomson Marconi Sonar proprietary protocol
- Data sent: Roll, Pitch, Heave, Heading, Linear accelerations, Rotations rates, Status.
- Data frame: 13 fields 24 bytes. LSB are sent first.

Message <f0><f1><f12></f12></f1></f0>			
Field 0	Bytes 0 to 1	Header	Fixed value = 0x0090
Field 1	Bytes 2 to 3	Roll	+/-180° ; LSB = 180° / 2 ¹⁵
			Sign "+" when port up
Field 2	Bytes 4 to 5	Pitch	+/-180° ; LSB = 180° / 2 ¹⁵
			Sign "+" when bow up
			Warning: Opposite sign of PHINS usual convention.
Field 3	Bytes 6 to 7	Heave	+/-327 m ; LSB = 327m / 2 ¹⁵
			Sign "+" when AHRS goes down
			Warning: Opposite sign of PHINS usual convention.
Field 4	Bytes 8 to 9	Heading	0° to 360° ; LSB = 360° / 2 ¹⁶
Field 5	Bytes 10 to 11	XV1 acceleration*	+/-0.5 g; LSB = 0.5g / 2 ¹⁵
Field 6	Bytes 12 to 13	-XV2 acceleration*	+/-0.5 g; LSB = 0.5g / 2 ¹⁵
			Warning: Opposite sign of PHINS usual convention.
Field 7	Bytes 14 to 15	-XV3 acceleration*	+/-0.5 g; LSB = 0.5g / 2 ¹⁵
			Warning: Opposite sign of PHINS usual convention.
Field 8	Bytes 16 to 17	XV1 rotation rate*	+/-20°/s; LSB = 20°/s / 2 ¹⁵
Field 9	Bytes 18 to 19	-XV2 rotation rate*	+/-20°/s; LSB = 20°/s / 2 ¹⁵
			Warning: Opposite sign of PHINS usual convention.
Field 10	Bytes 20 to 21	-XV3 rotation rate*	+/-20°/s; LSB = 20°/s / 2 ¹⁵
			Warning: Opposite sign of PHINS usual convention.
Field 11	Byte 22	Status	0xFF if Ok
			0xAA if Alignment
			0x00 if Error
Field 12	Byte 23	End of sentence	Fixed value = 0x91

TOKIMEC PTVF

This protocol is not available for all products.

Refer to the tables of the section 4.4.1 to know if this protocol is available for your product.

- Output NMEA 0183 compatible, Tokimec proprietary Standard:
- Data sent: Heading, Roll, Pitch, Roll speed, Pitch speed, Heading speed, Speed of the vessel, Status
- Data frame:

\$PTVF,abbbbP,accccR,ddd.dT,aeee.ePR,afff.fRR,aggg.gAR,ajj.jN,yyyMD,zzzzAL*hh<CR><LF>

where:

abbbb is the pitch bb(deg).bb(min) a [-] bow up / [space] bow down acccc is the roll in degrees cc(deg).cc(min) a [-] port up / [space] port down Warning: due to the coding, roll values larger than 99.99 degrees and lower than -99.99 degrees are saturated with a resolution of 1 degree ddd.d is the heading in degrees aee.e is the pitch speed in degrees/second OR (if pitch speed < 100) aeee.e is the pitch speed in degrees/second (if pitch speed ≥ 100) a [-] bow up / [space] bow down aff.f is the roll speed in degrees/second OR (if roll speed < 100) afff.f is the roll speed in degrees/second (if roll speed >= 100) a [-] port up / [space] port down agg.g is the heading speed in degrees/second OR (if heading speed <100) aggg.g is the heading speed in degrees/second OR (if heading speed >= 100) a [-] heading decreases / [space] heading increases ajj.j is the vessel speed in knot a [-] Astern / [space] Ahead Unused ууу zzzz status hh is a checksum zzzz is the hexadecimal value of the following status which is similar to \$PHINF except it only uses 4 hexadecimal numbers.

STATUS value for TOKIMEC PTVF protocol:

Bit 0	Heading invalid
Bit 1	Roll invalid
Bit 2	Pitch invalid
Bit 3	Heave init
Bit 4	Reserved
Bit 5	Initialization
Bit 6	Reserved
Bit 7	Reserved
Bit 8	FOG X1 anomaly
Bit 9	FOG X2 anomaly
Bit 10	FOG X3 anomaly
Bit 11	FOG acq error
Bit 12	Accelerometer X1 anomaly
Bit 13	Accelerometer X2 anomaly
Bit 14	Accelerometer X3 anomaly
Bit 15	Sensor error

\$--ZDA,hhmmss.ss,dd,mm,yyyy,hh,mm*hh<CR><LF> (1)

where: hhmmss.ss is UTC time synchronized with the last PPS frame received dd is the UTC day (from 01 to 31) mm is the UTC month (from 01 to 12) yyyy is the UTC year hh is the local zone hours (from 00 to \pm 13 hours) mm is the local zone minutes (from 00 to +59)

TOKIMEC PTVG

This protocol is not available for all products.

Refer to the tables of the section 4.4.1 to know if this protocol is available for your product.

- Standard: Output NMEA 0183 compatible, Tokimec proprietary
- Data sent: Heading, Roll, Pitch
- Data frame:

\$PTVG,abbbbP,accccR,ddd.dT*hh<CR><LF>

where: abbbb is the pitch

bb(deg).bb(min)

a [-] bow up / [space] bow down

acccc is the roll in degrees

cc(deg).cc(min)

a [-] port up / [space] port down

Warning: due to the coding, roll values larger than 99.99 degrees and lower

than -99.99 degrees are truncated with a resolution of 1 degree

ddd.d is the heading in degrees

hh is a checksum

\$--ZDA,hhmmss.ss,dd,mm,yyyy,hh,mm*hh<CR><LF> (1)

where:

hhmmss.ss is UTC time synchronized with the last PPS frame received dd is the UTC day (from 01 to 31) mm is the UTC month (from 01 to 12) yyyy is the UTC year

hh is the local zone hours (from 00 to \pm 13 hours)

mm is the local zone minutes (from 00 to +59)

TSS1/DMS

This protocol is not available for all products. Refer to the tables of the section 4.4.1 to know if this protocol is available for your product.

- Standard: Output TSS proprietary protocol
- Data sent: Roll, Pitch, Heave, Linear accelerations, Status Accelerations are compensated from earth gravity. All values are saturated to maximum value
- Data frame: The frame contains 27 bytes in ASCII format

:XXAAAA <sp>MHHHHQMRRRR<sp>MPPPP<cr><lf></lf></cr></sp></sp>			
where:	:	Header character	0x3A
	ХХ	Horizontal acceleration (in	Acc: 0 to 9.81 m.s ⁻²
		plane X _{V1} , X _{V2})	Unit: 3.83 cm.s ⁻²
			(ASCII representation of a 8 bits
			unsigned integer hexadecimal value)
	ΑΑΑΑ	X _{V3} acceleration	Acc: ± 20.48 m.s ⁻²
			Unit: 0.0625 cm.s ⁻²
			Sign "+" when system goes up
			(ASCII representation of a 16 bits
			signed 2 complement integer
			hexadecimal value)
	<sp></sp>	Space character	0x20
	мнннн	Heave	Heave: ± 99 m
			Unit: 1 cm
			M is the space character when system
			goes up
			M is the minus character when system
			goes down
	Q	Status character	'h' for alignment mode
			'H' for nominal mode

:XXAAAA <sp>MHHHHQMRRRR<sp>MPPPP<cr><lf></lf></cr></sp></sp>			
	MRRRR	Roll	Roll ± 90°
			Unit : 0.01°
			M is the space character when port up
			M is the minus character when port
			down
	<sp></sp>	Space character	0x20
	МРРРР	Pitch	Pitch ± 90°
			Unit : 0.01°
			Sign "+" when bow up
			M is the space character when bow up
			M is the minus character when bow
			down
			Warning: Opposite sign of usual
			convention
	<cr><lf></lf></cr>	End of frame	0x0D 0x0A

If ZDA tick box is checked a \$PHZDA telegram is added to the protocol output messages, see section 3.2.1.5.

TSS335B

This protocol is not available for all products. Refer to the tables of the section 4.4.1 to know if this protocol is available for your product.

- Standard: Output TSS proprietary protocol
- Data sent: Roll, Pitch, Heave, Linear accelerations, Status. Accelerations are compensated from earth gravity. All values are saturated to maximum value.
- Data frame: The frame contains 27 bytes in ASCII format with an header and an "end of frame" fields.

:XXAAAA <sp>MHHHHQMRRRR<sp>MPPPP<cr><lf></lf></cr></sp></sp>				
where:	:	Header character	0x3A	
	xx	Horizontal acceleration (in plane X_{V1} , X_{V2})	Acc: 0 to 9.81 m.s ⁻² Unit: 3.83 cm.s ⁻² (ASCII representation of a 16bits unsigned	
	ΑΑΑΑ	X _{V3} acceleration	Acc: ± 20.48 m.s ⁻² Unit: 0.0625 cm.s ⁻² Sign "+" when system goes up (ASCII representation of a 32bits signed 2 complement integer hexadecimal value)	
	<sp></sp>	Space character	0x20	
	МНННН	Heave	Heave: ± 99 m Unit: 1 cm M is the space character when system goes up M is the minus character when system goes down	
	Q	Status character	'?' for alignment mode space character for nominal mode	
	MRRRR	Roll	Roll ± 90° Unit : 0.01° M is the space character when port up M is the minus character when port down	
	<sp></sp>	Space character	0x20	
	МРРРР	Pitch	Pitch ± 90° Unit : 0.01° Sign "+" when bow up M is the space character when bow up M is the minus character when bow down <u>Warning:</u> Opposite sign of usual convention	
	<cr><lf></lf></cr>	End of frame	0x0D 0x0A	

If ZDA tick box is checked a \$PHZDA telegram is added to the protocol output messages,

see section 3.2.1.5.

TUS

This protocol is not available for all products. Refer to the tables of the section 4.4.1 to know if this protocol is available for your product.

Standard:	Binary protocol
Data sent:	Heading, Roll, Pitch, Heave speed, Surge speed, Sway speed, Linear
	accelerations, Rotation rates, Status
Data frame:	The frame contains 16 fields - 29 bytes. LSB are sent first. Except
	Heading, each data is "two complemented" coded

Message <	F0> <f1><f12></f12></f1>		
Field 0	Bytes 0 to 1	Header	Header LSB = 0x00 ; Header MSB = 0x90
Field 1	Bytes 2 to 3	Roll	+/-180° ; LSB = 180/2 ¹⁵ = 0.00549°
			Sign "+" when port up
Field 2	Bytes 4 to 5	Pitch	+/-180° ; LSB = 180/2 ¹⁵ = 0.00549°
			Sign "+" when bow up
Field 3	Bytes 6 to 7	Heave speed	+/-327 m/s ; LSB = 327/2 ¹⁵ =0.00997 m/s
			Sign "+" in down direction
Field 4	Bytes 8 to 9	Surge speed	+/-327 m/s ; LSB = 327/ 2 ¹⁵ =0.00997 m/s
			Sign "+" in forward direction
Field 5	Bytes 10 to 11	Sway speed	+/-327 m/s ; LSB = 327/ 2 ¹⁵ =0.00997 m/s
			Sign "+" in left direction
Field 6	Bytes 12 to 13	Heading	0° to 360° ; LSB = 360/2 ¹⁶ = 0.00549°
Field 7	Bytes 14 to 15	XV1 acceleration*	+/-0.5 g; LSB = 0.5/ 2^{15} . Positive in XV1 direction
			(forward)
Field 8	Bytes 16 to 17	-XV2 acceleration*	+/-0.5 g; LSB = 0.5/2 ¹⁵ = 15.2 μg
			Sign "+" in opposite direction of XV2 (right)
Field 9	Bytes 18 to 19	-XV3 acceleration*	+/-0.5 g; LSB = 0.5/2 ¹⁵ =15.2 μg
			Sign "+" in opposite direction of XV3 (down)
Field 10	Bytes 20 to 21	Roll rate*	+/-20°/s; LSB = 20/2 ¹⁵ =0.00061 °/s
			Sign "+" when rotating port up
Field 11	Bytes 22 to 23	Pitch rate*	+/-20°/s; LSB = 20/2 ¹⁵ =0.00061 °/s
			Sign "+" when rotating bow up
Field 12	Bytes 24 to 25	Heading rate*	+/-20°/s; LSB = 20/2 ¹⁵ =0.00061 °/s
			Sign "+" when heading decreases

Message <f0><f1><f12></f12></f1></f0>			
Field 13	Byte 26	Status**	0xFF if Ok
			0xAA if Initial alignment (5 first minutes)
			0x00 if Error
Field 14	Byte 27	Checksum	Addition of all the bytes from 0 to 26 discarding overflow
Field 15	Byte 28	End of sentence	Fixed value = 0x91

*To comply with export regulation, the resolution of rotation rate data is limited to 3.6 deg/h and the resolution of acceleration data is limited to 1 mg. Accelerations are compensated from g.

**Status specification table

Function	Value	Links with OCTANS status word
Alignment	0xAA	Bit 1 of the OCT IV LSB Algorithm Status word (see Table 5)
Error	0x00	Bit 27 and 30 of the OCT IV MSB User status word (see Table 9)
Ok	0xFF (Status default value)	None

5 PULSE INTERFACES

The following protocols are available for interfacing through the pulse ports:

- INPUT:
 - □ SEROUT X Synchro (on port pulse in B or C)
 - □ PPS rising edge & ZDA (on port pulse in A)
 - □ PPS falling edge & ZDA (on port pulse in A)
 - □ ZDA & PPS rising edge (on port pulse in A)
 - ZDA & PPS falling edge (on port pulse in A)
- OUTPUT:
 - □ SEROUT X RTC (on port pulse out A or B)

SEROUT X Synchro

Description of protocol is similar for X = A, B or C depending on the serial port considered.

- Standard: none
- Definition: On pulse input (B or C) rising edge, serial or Ethernet output X (A, B or C) samples data corresponding to its configuration.
- Scale factor: No effect

The input pulse should have the following characteristics: TTL 5V

Caution

If the serial output sampling clock is not set to 0 in the configuration of serial port X, data will be sent according to the sampling clock and the pulse rising edge.

SEROUT X RTC OUTPUT

Description of protocol is similar for X = A, B or C depending on the serial port considered.

- Standard: none
- Definition: The digital output (A or B) is used as RTC signal of the serial X output (A, B or C)
- Scale factor: No effect

PPS rising edge & ZDA

- Standard: none
- Definition: on pulse input rising edge, the OCTANS internal clock is sampled and can be synchronized with the next external time information (for example GPS ZDA frame).
- Scale factor: No effect
- Available on port D

PPS falling edge & ZDA

- Standard: none
- Definition: On pulse input falling edge, the OCTANS internal clock is sampled and can be synchronized with the next external time information (for example GPS ZDA frame).
- Scale factor: No effect
- Available on port D

T1 > 20ms

ZDA & PPS rising edge

- Standard: none
- Definition: on pulse input rising edge, the OCTANS internal clock is sampled and can be synchronized with the preceding external time information (for example GPS ZDA frame).
- Scale factor: No effect
- Available on port D

T1 > 20 ms

ZDA & PPS falling edge

- Standard: none
- Definition: On pulse input falling edge, the OCTANS internal clock is sampled and can be synchronized with the preceding external time information (for example GPS ZDA frame).
- Scale factor: No effect
- Available on port D

T1 > 20 ms